\[\boxed{\mathbf{590\ (590).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 1 < \sqrt{2} < 2\]
\[2)\ 1 < \sqrt{3} < 2\]
\[3)\ 2 < \sqrt{5} < 3\]
\[4)\ 2 < \sqrt{7} < 3\]
\[5)\ 3 < \sqrt{13} < 4\]
\[6)\ 0 < \sqrt{0,98} < 1\]
\[7)\ 7 < \sqrt{59} < 8\]
\[8) - 11 < - \sqrt{115} < - 10\]
\[9) - 9 < - \sqrt{76,19} < - 8\]
\[\boxed{\mathbf{5}\mathbf{9}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{\sqrt{m}}{\sqrt{m} - \sqrt{n}}\ :\left( \frac{\sqrt{m} + \sqrt{n}}{\sqrt{n}} + \frac{\sqrt{n}}{\sqrt{m} - \sqrt{n}} \right) = \frac{\sqrt{n}}{\sqrt{m}}\]
\[\frac{\sqrt{m} + {\sqrt{n}}^{\backslash\sqrt{m} - \sqrt{n}}}{\sqrt{n}} + \frac{{\sqrt{n}}^{\backslash\sqrt{n}}}{\sqrt{m} - \sqrt{n}} =\]
\[= \frac{m - n + n}{\sqrt{n}\left( \sqrt{m} - \sqrt{n} \right)} = \frac{m}{\sqrt{n}\left( \sqrt{m} - \sqrt{n} \right)}\]
\[\frac{\sqrt{m}}{\sqrt{m} - \sqrt{n}} \cdot \frac{\sqrt{n}\left( \sqrt{m} - \sqrt{n} \right)}{m} = \frac{\sqrt{n}}{\sqrt{m}}\]
\[2)\ \left( \frac{\sqrt{x} + 1}{\sqrt{x} - 1} - \frac{4\sqrt{x}}{x - 1} \right) \cdot \frac{x + \sqrt{x}}{\sqrt{x} - 1} = \sqrt{x}\]
\[\frac{\sqrt{x} + 1^{\backslash\sqrt{x} + 1}}{\sqrt{x} - 1} - \frac{4\sqrt{x}}{x - 1} =\]
\[= \frac{x + 2\sqrt{x} + 1 - 4\sqrt{x}}{\left( \sqrt{x} - 1 \right)\left( \sqrt{x} + 1 \right)} =\]
\[= \frac{x - 2\sqrt{x} + 1}{\left( \sqrt{x} - 1 \right)\left( \sqrt{x} + 1 \right)} =\]
\[= \frac{\left( \sqrt{x} - 1 \right)^{2}}{\left( \sqrt{x} - 1 \right)\left( \sqrt{x} + 1 \right)} = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}\ \]
\[\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \cdot \frac{x + \sqrt{x}}{\sqrt{x} - 1} =\]
\[= \frac{\left( \sqrt{x} - 1 \right)\sqrt{x}\left( \sqrt{x} + 1 \right)}{\left( \sqrt{x} - 1 \right)\left( \sqrt{x} + 1 \right)} = \sqrt{x}.\]