\[\boxed{\mathbf{589\ (589).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[5,9;\ \ \ \sqrt{35};\ \ 6;\ \ 6,1;\ \ \ \sqrt{38}.\]
\[\boxed{\mathbf{5}\mathbf{89}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left( {\sqrt{a}}^{\backslash\text{√}a + 1} - \frac{a}{\sqrt{a} + 1} \right)\ :\frac{\sqrt{a}}{a - 1} =\]
\[= \frac{a + \sqrt{a} - a}{\sqrt{a} + 1} \cdot \frac{a - 1}{\sqrt{a}} =\]
\[= \frac{\sqrt{a}\left( \sqrt{a} + 1 \right)\left( \sqrt{a} - 1 \right)}{\sqrt{a}\left( \sqrt{a} + 1 \right)} = \sqrt{a} - 1.\]
\[2)\ \left( \frac{\sqrt{a} + {\sqrt{b}}^{\backslash\sqrt{a} - \sqrt{b}}}{\sqrt{b}} + \frac{{\sqrt{b}}^{\backslash\sqrt{b}}}{\sqrt{a} - \sqrt{b}} \right)\ :\frac{\sqrt{a}}{\sqrt{b}} =\]
\[= \frac{a - b + b}{\sqrt{b}\left( \sqrt{a} - \sqrt{b} \right)} \cdot \frac{\sqrt{b}}{\sqrt{a}} =\]
\[= \frac{a}{\sqrt{a}\left( \sqrt{a} - \sqrt{b} \right)} = \frac{\sqrt{a}}{\sqrt{a} - \sqrt{b}}\ \]
\[3)\ \left( \frac{\sqrt{x} - 3^{\backslash\sqrt{x} - 3}}{\sqrt{x} + 3} + \frac{12\sqrt{x}}{x - 9} \right)\ :\frac{\sqrt{x} + 3}{x - 3\sqrt{x}} =\]
\[= \frac{x - 6\sqrt{x} + 9 + 12\sqrt{x}}{\left( \sqrt{x} + 3 \right)\left( \sqrt{x} - 3 \right)} \cdot \frac{x - 3\sqrt{x}}{\sqrt{x} + 3} =\]
\[= \frac{\left( x + 6\sqrt{x} + 9 \right)\sqrt{x}\left( \sqrt{x} - 3 \right)}{\left( \sqrt{x} + 3 \right)^{2}\left( \sqrt{x} - 3 \right)} =\]
\[= \frac{\left( \sqrt{x} + 3 \right)^{2}\sqrt{x}}{\left( \sqrt{x} + 3 \right)^{2}} = \sqrt{x}.\]
\[4)\ \frac{a - 64}{\sqrt{a} + 3} \cdot \frac{1}{a + 8\sqrt{a}} - \frac{\sqrt{a} + 8}{a - 3\sqrt{a}} =\]
\[= \frac{\left( \sqrt{a} - 8 \right)\left( \sqrt{a} + 8 \right)}{\left( \sqrt{a} + 3 \right)\sqrt{a}\left( \sqrt{a} + 8 \right)} - \frac{\sqrt{a} + 8}{a - 3\sqrt{a}} =\]
\[= \frac{\sqrt{a} - 8^{\backslash\sqrt{a} - 3}}{\sqrt{a}\left( \sqrt{a} + 3 \right)} - \frac{\sqrt{a} + 8^{\backslash\sqrt{a} + 3}}{\sqrt{a}\left( \sqrt{a} - 3 \right)} =\]
\[= \frac{a - 8\sqrt{a} - 3\sqrt{a} + 24 - a - 8\sqrt{a} - 3\sqrt{a} - 24}{\sqrt{a}\left( \sqrt{a} + 3 \right)\left( \sqrt{a} - 3 \right)} =\]
\[= - \frac{22\sqrt{a}}{\sqrt{a}(a - 9)} = \frac{22}{9 - a}\ \]