\[\boxed{\mathbf{584\ (584).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ A\ (16;4):\ \]
\[4 = \sqrt{16}\ \]
\[4 = 4 \Longrightarrow \ \ график\ проходит\ \]
\[через\ ( \cdot )A.\]
\[2)\ \text{B\ }(49;\ - 7):\ \ \]
\[- 7 \neq \sqrt{49}\text{\ \ }\]
\[- 7 \neq 7 \Longrightarrow \ \ не\ проходит\]
\[через\ ( \cdot )B.\]
\[3)\ \text{C\ }(3,6;0,6):\ \ \]
\[0,6 \neq \sqrt{3,6} \Longrightarrow \ график\ \]
\[не\ проходит\ через\ ( \cdot )C.\]
\[4)\ \text{D\ }( - 36;6):\ \ \]
\[6 \neq - \sqrt{36} \Longrightarrow \ \ \ график\ \]
\[не\ проходит\ через\ ( \cdot )D.\]
\[\boxed{\mathbf{5}\mathbf{8}\mathbf{4}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{\sqrt{5}}{\sqrt{5} - 2} = \frac{\sqrt{5} \cdot \left( \sqrt{5} + 2 \right)}{\left( \sqrt{5} + 2 \right)\left( \sqrt{5} - 2 \right)} =\]
\[= \frac{5 + 2\sqrt{5}}{5 - 4} = 5 + 2\sqrt{5}\]
\[2)\ \frac{8}{\sqrt{10} - \sqrt{2}} =\]
\[= \frac{8 \cdot \left( \sqrt{10} + \sqrt{2} \right)}{\left( \sqrt{10} - \sqrt{2} \right)\left( \sqrt{10} + \sqrt{2} \right)} =\]
\[= \sqrt{10} + \sqrt{2}\]
\[3)\ \frac{9}{\sqrt{x} + \sqrt{y}} =\]
\[= \frac{9 \cdot \left( \sqrt{x} - \sqrt{y} \right)}{\left( \sqrt{x} + \sqrt{y} \right)\left( \sqrt{x} - \sqrt{y} \right)} =\]
\[= \frac{9 \cdot \left( \sqrt{x} - \sqrt{y} \right)}{x - y}\]
\[4)\ \frac{2 - \sqrt{2}}{2 + \sqrt{2}} = \frac{\left( 2 - \sqrt{2} \right)^{2}}{\left( 2 + \sqrt{2} \right)\left( 2 - \sqrt{2} \right)} =\]
\[= \frac{\left( 2 - \sqrt{2} \right)^{2}}{2} = \frac{4 - 4\sqrt{2} + 6}{2} =\]
\[= \frac{6 - 4\sqrt{2}}{2} = 3 - 2\sqrt{2}\]