Решебник по алгебре 8 класс Мерзляк ФГОС Задание 583

Авторы:
Год:2024
Тип:учебник
Серия:Алгоритм успеха

Задание 583

Выбери издание
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021

\[\boxed{\mathbf{583\ (583).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ A\ (36;6):\ \ \]

\[6 = \sqrt{36}\]

\[6 = 6 \Longrightarrow \ \ проходит\ через\ \]

\[точку\ A.\]

\[2)\ B\ (4;\ - 2):\ \]

\[\ - 2 = \sqrt{4}\text{\ \ }\]

\[- 2 \neq 2 \Longrightarrow \ \ не\ проходит\ через\ \]

\[точку\ B.\]

\[3)\ C\ (0,81;0,9):\ \]

\[0,9 = \sqrt{0,81}\text{\ \ }\]

\[0,9 = 0,9 \Longrightarrow \ проходит\ через\ \]

\[точку\ C.\]

\[4)\ D\ ( - 1;1):\text{\ \ }\]

\[1 = - \sqrt{1} \Longrightarrow \ \ не\ проходит\ \]

\[через\ точку\ D.\]

\[5)\ E\ (42,25;6,5):\ \]

\[\ 6,5 = \sqrt{42,25}\]

\[6,5 = 6,5 \Longrightarrow \ проходит\ через\ \]

\[точку\ E.\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{5}\mathbf{8}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\frac{\sqrt{2}}{\sqrt{2} + 1} = \frac{\sqrt{2} \cdot \left( \sqrt{2} - 1 \right)}{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} - 1 \right)} =\]

\[= \frac{2 - \sqrt{2}}{2 - 1} = 2 - \sqrt{2}\]

\[2)\ \frac{4}{\sqrt{7} + \sqrt{3}} =\]

\[= \frac{4 \cdot \left( \sqrt{7} - \sqrt{3} \right)}{\left( \sqrt{7} + \sqrt{3} \right)\left( \sqrt{7} - \sqrt{3} \right)} =\]

\[= \frac{4 \cdot \left( \sqrt{7} - \sqrt{3} \right)}{7 - 3} = \sqrt{7} - \sqrt{3}\]

\[3)\ \frac{15}{\sqrt{15} - \sqrt{12}} =\]

\[= \frac{15 \cdot \left( \sqrt{15} + \sqrt{12} \right)}{\left( \sqrt{15} - \sqrt{12} \right)\left( \sqrt{15} + \sqrt{12} \right)} =\]

\[= \frac{15 \cdot \left( \sqrt{15} + \sqrt{12} \right)}{15 - 12} =\]

\[= 5 \cdot (\sqrt{15} + \sqrt{12})\]

\[4)\ \frac{19}{2\sqrt{5} - 1} =\]

\[= \frac{19 \cdot \left( 2\sqrt{5} + 1 \right)}{\left( 2\sqrt{5} - 1 \right)\left( 2\sqrt{5} + 1 \right)} =\]

\[= \frac{19 \cdot \left( 2\sqrt{5} + 1 \right)}{20 - 1} = 2\sqrt{5} + 1\]

\[5)\ \frac{1}{\sqrt{a} - \sqrt{b}} =\]

\[= \frac{1 \cdot \left( \sqrt{a} + \sqrt{b} \right)}{\left( \sqrt{a} - \sqrt{b} \right)\left( \sqrt{a} + \sqrt{b} \right)} =\]

\[= \frac{\sqrt{a} + \sqrt{b}}{a - b}\]

\[6)\ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{\left( \sqrt{3} + 1 \right)^{2}}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]

\[= \frac{\left( \sqrt{3} + 1 \right)^{2}}{2} = \frac{3 + 2\sqrt{3} + 1}{2} =\]

\[= \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам