\[\boxed{\mathbf{583\ (583).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ A\ (36;6):\ \ \]
\[6 = \sqrt{36}\]
\[6 = 6 \Longrightarrow \ \ проходит\ через\ \]
\[точку\ A.\]
\[2)\ B\ (4;\ - 2):\ \]
\[\ - 2 = \sqrt{4}\text{\ \ }\]
\[- 2 \neq 2 \Longrightarrow \ \ не\ проходит\ через\ \]
\[точку\ B.\]
\[3)\ C\ (0,81;0,9):\ \]
\[0,9 = \sqrt{0,81}\text{\ \ }\]
\[0,9 = 0,9 \Longrightarrow \ проходит\ через\ \]
\[точку\ C.\]
\[4)\ D\ ( - 1;1):\text{\ \ }\]
\[1 = - \sqrt{1} \Longrightarrow \ \ не\ проходит\ \]
\[через\ точку\ D.\]
\[5)\ E\ (42,25;6,5):\ \]
\[\ 6,5 = \sqrt{42,25}\]
\[6,5 = 6,5 \Longrightarrow \ проходит\ через\ \]
\[точку\ E.\]
\[\boxed{\mathbf{5}\mathbf{8}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{\sqrt{2}}{\sqrt{2} + 1} = \frac{\sqrt{2} \cdot \left( \sqrt{2} - 1 \right)}{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} - 1 \right)} =\]
\[= \frac{2 - \sqrt{2}}{2 - 1} = 2 - \sqrt{2}\]
\[2)\ \frac{4}{\sqrt{7} + \sqrt{3}} =\]
\[= \frac{4 \cdot \left( \sqrt{7} - \sqrt{3} \right)}{\left( \sqrt{7} + \sqrt{3} \right)\left( \sqrt{7} - \sqrt{3} \right)} =\]
\[= \frac{4 \cdot \left( \sqrt{7} - \sqrt{3} \right)}{7 - 3} = \sqrt{7} - \sqrt{3}\]
\[3)\ \frac{15}{\sqrt{15} - \sqrt{12}} =\]
\[= \frac{15 \cdot \left( \sqrt{15} + \sqrt{12} \right)}{\left( \sqrt{15} - \sqrt{12} \right)\left( \sqrt{15} + \sqrt{12} \right)} =\]
\[= \frac{15 \cdot \left( \sqrt{15} + \sqrt{12} \right)}{15 - 12} =\]
\[= 5 \cdot (\sqrt{15} + \sqrt{12})\]
\[4)\ \frac{19}{2\sqrt{5} - 1} =\]
\[= \frac{19 \cdot \left( 2\sqrt{5} + 1 \right)}{\left( 2\sqrt{5} - 1 \right)\left( 2\sqrt{5} + 1 \right)} =\]
\[= \frac{19 \cdot \left( 2\sqrt{5} + 1 \right)}{20 - 1} = 2\sqrt{5} + 1\]
\[5)\ \frac{1}{\sqrt{a} - \sqrt{b}} =\]
\[= \frac{1 \cdot \left( \sqrt{a} + \sqrt{b} \right)}{\left( \sqrt{a} - \sqrt{b} \right)\left( \sqrt{a} + \sqrt{b} \right)} =\]
\[= \frac{\sqrt{a} + \sqrt{b}}{a - b}\]
\[6)\ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{\left( \sqrt{3} + 1 \right)^{2}}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]
\[= \frac{\left( \sqrt{3} + 1 \right)^{2}}{2} = \frac{3 + 2\sqrt{3} + 1}{2} =\]
\[= \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}\]