\[\boxed{\text{57}\text{\ (57)}\text{.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{|x|}{x};\ \ x \neq 0\]
\[y = \left\{ \begin{matrix} 1;\ \ \ \ \ x > 0 \\ - 1;\ \ x < 0 \\ \end{matrix} \right.\ \]
\[2)\ y = \frac{x^{2} - 1}{|x| - 1} = \frac{(x - 1)(x + 1)}{|x| - 1};\ \ \ \ \]
\[x \neq 1;\ \ x \neq - 1\]
\[y = \left\{ \begin{matrix} x + 1;\ \ x \geq 0 \\ 1 - x;\ \ x < 0 \\ \end{matrix} \right.\ \]
\[\boxed{\text{57.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{|x|}{x};\ \ x \neq 0\]
\[y = \left\{ \begin{matrix} 1;\ \ \ \ \ x > 0 \\ - 1;\ \ x < 0 \\ \end{matrix} \right.\ \]
\[2)\ y = \frac{x^{2} - 1}{|x| - 1} = \frac{(x - 1)(x + 1)}{|x| - 1};\ \ \ \ \]
\[x \neq 1;\ \ x \neq - 1\]
\[y = \left\{ \begin{matrix} x + 1;\ \ x \geq 0 \\ 1 - x;\ \ x < 0 \\ \end{matrix} \right.\ \]