\[\boxed{\mathbf{567\ (567).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{8\sqrt{a}}{\sqrt{a} + 7} - \frac{15\sqrt{a}}{\left( \sqrt{a} + 7 \right)^{2}} =\]
\[= \frac{8\sqrt{a} \cdot \left( \sqrt{a} + 7 \right) - 15\sqrt{a}}{\left( \sqrt{a} + 7 \right)^{2}} =\]
\[= \frac{8a + 56\sqrt{a} - 15\sqrt{a}}{\left( \sqrt{a} + 7 \right)^{2}} =\]
\[= \frac{8a + 41\sqrt{a}}{\left( \sqrt{a} + 7 \right)^{2}}\]
\[3)\ \frac{\sqrt{a} \cdot \left( \sqrt{a} - 7 \right) + 7\sqrt{a} - 49}{\sqrt{a} + 7} =\]
\[= \frac{a - 49}{\sqrt{a} + 7} = \frac{\left( \sqrt{a} - 7 \right)\left( \sqrt{a} + 7 \right)}{\left( \sqrt{a} + 7 \right)} =\]
\[= \sqrt{a} - 7\]
\[\sqrt{a} - 7 = \sqrt{a} - 7\ \]
\[Что\ и\ требовалось\ доказать.\]
\[= \frac{a - 9 - \sqrt{\text{ab}} + 9}{\left( \sqrt{a} + 3 \right)\left( a - 3\sqrt{a} + 9 \right)} =\]
\[= \frac{a - \sqrt{\text{ab}}}{\left( \sqrt{a} + 3 \right)\left( a - 3\sqrt{a} + 9 \right)}\ \]
\[2)\frac{\left( a\sqrt{a} + 27 \right) \cdot \sqrt{a} \cdot \left( \sqrt{a} - \sqrt{b} \right)}{\left( \sqrt{a} - \sqrt{b} \right) \cdot \left( a\sqrt{a} + 27 \right)} =\]
\[= \sqrt{a}\ \]
\[\sqrt{a} = \sqrt{a}\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{5}\mathbf{6}\mathbf{7}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left( 3 + \sqrt{5} \right)^{2} - 6\sqrt{5} =\]
\[= 9 + 6\sqrt{5} + 5 - 6\sqrt{5} = 14;\]
\[2)\ \left( \sqrt{12} - 2\sqrt{2} \right)^{2} + 8\sqrt{6} =\]
\[= 12 - 4\sqrt{24} + 8 + 8\sqrt{6} =\]
\[= 12 - 8\sqrt{6} + 8 + 8\sqrt{6} = 20\]