\[\boxed{\mathbf{566\ (566).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ m\sqrt{7} = \sqrt{7m^{2}};\ \ m \geq 0\]
\[2)\ 3n\sqrt{6} = - \sqrt{54n^{2}};\ \ n \leq 0\]
\[3)\ p\sqrt{p^{3}} = \sqrt{p^{5}}\]
\[4)\ x^{4}y\sqrt{x^{5}y} = - \sqrt{x^{13}y^{3}};\ \ y \leq 0\]
\[5)\ 7a\sqrt{\frac{3}{a}} = \sqrt{\frac{49a^{2} \cdot 3}{a}} = \sqrt{147a}\]
\[6)\ 5ab\sqrt{- \frac{a^{7}}{5b}} = - \sqrt{- 5a^{9}b};\ \ \]
\[a \leq 0,\ \ b > 0\]
\[\boxed{\mathbf{5}\mathbf{6}\mathbf{6}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1){\ \left( 2 + \sqrt{7} \right)}^{2} - 4\sqrt{7} =\]
\[= 4 + 4\sqrt{7} + 7 - 4\sqrt{7} = 11;\]
\[2)\ \left( \sqrt{6} - \sqrt{3} \right)² + 6\sqrt{2} =\]
\[= 6 - 2\sqrt{18} + 3 + 6\sqrt{2} =\]
\[= 6 - 6\sqrt{2} + 3 + 6\sqrt{2} = 9.\]