\[\boxed{\mathbf{536\ (536).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{2} \cdot \left( \sqrt{50} + \sqrt{8} \right) =\]
\[= \sqrt{100} + \sqrt{16} = 10 + 4 = 14;\]
\[2)\ \left( \sqrt{3} - \sqrt{12} \right) \cdot \sqrt{3} =\]
\[= \sqrt{9} - \sqrt{36} = 3 - 6 = - 3;\]
\[3)\ \left( 3\sqrt{5} - 4\sqrt{3} \right) \cdot \sqrt{5} =\]
\[= 3\sqrt{25} - 4\sqrt{15} = 15 - 4\sqrt{15};\]
\[4)\ 2\sqrt{2} \cdot \left( 3\sqrt{18} - \frac{1}{4}\sqrt{2} + \sqrt{32} \right) =\]
\[= 6\sqrt{36} - 0,5\sqrt{4} + 2\sqrt{64} =\]
\[= 6 \cdot 6 - 0,5 \cdot 2 + 2 \cdot 8 =\]
\[= 36 - 1 + 16 = 51.\]
\[\boxed{\mathbf{5}\mathbf{3}\mathbf{6}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{b^{2}} = |b|;\]
\[2) - 0,4 \cdot \sqrt{c^{2}} = - 0,4 \cdot |c|;\]
\[3)\ \sqrt{a^{6}} = \left| a^{3} \right|;\]
\[4)\ \sqrt{m^{8}} = \left| m^{4} \right|.\]