\[\boxed{\mathbf{527\ (527).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 7\sqrt{2} = \sqrt{49 \cdot 2} = \sqrt{98};\]
\[2)\ 3\sqrt{13} = \sqrt{9 \cdot 13} = \sqrt{117};\]
\[3) - 2\sqrt{17} = - \sqrt{4} \cdot \sqrt{17} = - \sqrt{68};\]
\[4) - 10\sqrt{14} = - \sqrt{1400};\]
\[5)\ 5\sqrt{8} = \sqrt{25 \cdot 8} = \sqrt{200};\]
\[6)\ 6\sqrt{a} = \sqrt{36a};\]
\[7)\frac{1}{4}\sqrt{32} = \sqrt{\frac{1}{16} \cdot 32} = \sqrt{2};\]
\[8) - \frac{2}{3}\sqrt{54} = - \sqrt{\frac{4}{9} \cdot 54} = - \sqrt{24};\]
\[9)\frac{1}{8}\sqrt{128a} = \sqrt{\frac{1}{64} \cdot 128a} = \sqrt{2a};\]
\[10) - 0,3\sqrt{10b} = - \sqrt{\frac{9}{100} \cdot 10b} =\]
\[= - \sqrt{0,9b};\]
\[11)\ 3\ \sqrt{\frac{1}{3}} = \sqrt{9 \cdot \frac{1}{3}} = \sqrt{3};\]
\[\ 12)\frac{2}{9}\sqrt{\frac{27}{28}} = \sqrt{\frac{4}{81} \cdot \frac{27}{28}} = \sqrt{\frac{1}{21}}.\]
\[\boxed{\mathbf{5}\mathbf{27}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{27} \cdot \sqrt{3} = \sqrt{27 \cdot 3} = \sqrt{81} = 9\]
\[2)\ \sqrt{18} \cdot \sqrt{2} = \sqrt{36} = 6\]
\[3)\ \sqrt{10} \cdot \sqrt{12,1} = \sqrt{121} = 11\]
\[4)\ \sqrt{0,5} \cdot \sqrt{50} = \sqrt{25} = 5\]
\[5)\ \sqrt{1\frac{3}{7}} \cdot \sqrt{2,8} = \sqrt{1\frac{3}{7} \cdot 2\frac{8}{10}} =\]
\[= \sqrt{\frac{10 \cdot 28}{7 \cdot 10}} = \sqrt{4} = 2\]
\[6)\ \sqrt{5 \cdot 2^{3}} \cdot \sqrt{5^{3} \cdot 2^{3}} = \sqrt{5^{4} \cdot 2^{6}} =\]
\[= 5² \cdot 2³ = 25 \cdot 8 = 200\]