\[\boxed{\mathbf{501\ (501).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{27} \cdot \sqrt{3} = \sqrt{27 \cdot 3} = \sqrt{81} = 9\]
\[2)\ \sqrt{18} \cdot \sqrt{2} = \sqrt{36} = 6\]
\[3)\ \sqrt{10} \cdot \sqrt{12,1} = \sqrt{121} = 11\]
\[4)\ \sqrt{0,5} \cdot \sqrt{50} = \sqrt{25} = 5\]
\[5)\ \sqrt{1\frac{3}{7}} \cdot \sqrt{2,8} = \sqrt{1\frac{3}{7} \cdot 2\frac{8}{10}} =\]
\[= \sqrt{\frac{10 \cdot 28}{7 \cdot 10}} = \sqrt{4} = 2\]
\[6)\ \sqrt{5 \cdot 2^{3}} \cdot \sqrt{5^{3} \cdot 2^{3}} = \sqrt{5^{4} \cdot 2^{6}} =\]
\[= 5² \cdot 2³ = 25 \cdot 8 = 200\]
\[\boxed{\mathbf{50}\mathbf{1}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\sqrt{3} \approx 1,73205\ldots\]
\[1)\ \sqrt{3} = 1,73;\]
\[2)\ \sqrt{3} = 1,74.\ \]