\[\boxed{\text{500\ (500).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \sqrt{12} \cdot \sqrt{3} = \sqrt{36} = 6.\]
\[2)\ \sqrt{32} \cdot \sqrt{2} = \sqrt{64} = 8.\]
\[3)\ \sqrt{18} \cdot \sqrt{50} = \sqrt{900} = 30.\]
\[4)\ \sqrt{0,009} \cdot \sqrt{1000} = \sqrt{9} = 3.\]
\[5)\ \sqrt{200} \cdot \sqrt{0,18} = \sqrt{36} = 6.\]
\[6)\ \sqrt{13} \cdot \sqrt{2} \cdot \sqrt{26} = \sqrt{676} = 26.\]
\[7)\ \sqrt{2,4} \cdot \sqrt{1\frac{2}{3}} = \sqrt{2\frac{4}{10}} \cdot \sqrt{1\frac{2}{3}} =\]
\[= \sqrt{\frac{24 \cdot 5}{10 \cdot 3}} = \sqrt{\frac{8 \cdot 1}{2 \cdot 1}} = \sqrt{4} = 2.\]
\[8)\ \sqrt{\frac{2}{11}} \cdot \sqrt{8} \cdot \sqrt{\frac{1}{11}} = \sqrt{\frac{2 \cdot 8}{11 \cdot 11}} =\]
\[= \sqrt{\frac{16}{121}} = \frac{4}{11}.\]
\[9)\ \sqrt{2^{3} \cdot 3} \cdot \sqrt{2^{5} \cdot 3^{3}} = \sqrt{2^{8} \cdot 3^{4}} =\]
\[= 2^{4} \cdot 3^{2} = 16 \cdot 9 = 144.\ \]