\[\boxed{\text{403\ (403).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (x + 6)^{2} = 0\] \[x + 6 = 0\] \[x = - 6.\] \[Ответ:\ x = - 6.\ \] |
\[3)\ (x + 6)^{2} = 3\] \[(x + 6)^{2} - \left( \sqrt{3} \right)^{2} = 0\] \[\left( x + 6 - \sqrt{3} \right)\left( x + 6 + \sqrt{3} \right) = 0\] \[x = \sqrt{3} - 6;\ \ x - - 6 - \sqrt{3}\] \[Ответ:x = \ \sqrt{3} - 6;\ - \sqrt{3} - 6.\ \] |
---|---|
\[2)\ (x + 6)^{2} = 9\] \[(x + 6)^{2} - 3^{2} = 0\] \[(x + 6 - 3)(x + 6 + 3) = 0\] \[(x + 3)(x + 9) = 0\] \[x = - 3;\ \ x = - 9\] \[Ответ:\ x = - 3;\ x = - 9.\ \] |
\[4)\ (7x + 6)^{2} = 5\] \[(7x + 6)^{2} - \left( \sqrt{5} \right)^{2} = 0\] \[\left( 7x + 6 - \sqrt{5} \right)\left( 7x + 6 + \sqrt{5} \right) = 0\] \[7x = \sqrt{5} - 6;\ \ \ \ 7x = - 6 - \sqrt{5}\] \[x = \frac{\sqrt{5} - 6}{7};\ \ \ \ \ \ x = \frac{- 6 - \sqrt{5}}{7}\] \[Ответ:x = \frac{\sqrt{5} - 6}{7};\frac{- \sqrt{5} - 6}{7}\text{.\ }\] |
\[\boxed{\text{403.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\mathbf{Подкоренное\ выражение\ может\ }\]
\[\mathbf{принимать\ только\ }\]
\[\mathbf{неотрицательные}\]
\[\mathbf{значения.}\]
\[1)\ \sqrt{2}\ \ \ \ имеет\ смысл;\]
\[2) - \sqrt{2}\ \ \ \ имеет\ смысл;\]
\[3)\ \sqrt{- 2}\ \ \ \ \ не\ имеет\ смысла;\]
\[4)\ \sqrt{( - 2)^{2}} = \sqrt{4}\text{\ \ }имеет\ смысл;\]
\[5)\ \left( \sqrt{- 2} \right)^{2}\ \ \ не\ имеет\ смысла.\]