Решебник по алгебре 8 класс Мерзляк Задание 389

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 389

\[\boxed{\text{389\ (389).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[1)\ \sqrt{16 + 9} = \sqrt{25} = 5\]

\[2)\ \sqrt{16} + \sqrt{9} = 4 + 3 = 7\]

\[3)\ \sqrt{36} - \sqrt{49} = 6 - 7 = - 1\]

\[4)\ \sqrt{36} \cdot \sqrt{49} = 6 \cdot 7 = 42\]

\[5)\ 5\sqrt{4} - \sqrt{25} = 5 \cdot 2 - 5 = 5\]

\[6)\ \sqrt{0,81} + \sqrt{0,01} = 0,9 + 0,1 = 1\]

\[7)\frac{1}{3}\sqrt{0,09} - 2 = \frac{0,3}{3} - 2 = - 1,9\]

\[8) - 2\sqrt{0,16} + 0,7 =\]

\[= - 2 \cdot 0,4 + 0,7 =\]

\[= - 0,8 + 1,7 = - 0,1\]

\[9)\ \left( \sqrt{13} \right)^{2} - 3 \cdot \left( \sqrt{8} \right)^{2} =\]

\[= 13 - 3 \cdot 8 = 13 - 24 = - 11\]

\[10)\frac{1}{6} \cdot \left( \sqrt{18} \right)^{2} - \left( \frac{1}{2}\sqrt{24} \right)^{2} =\]

\[= \frac{1}{6} \cdot 18 - \frac{1}{4} \cdot 24 = \frac{18}{6} - \frac{24}{4} =\]

\[= 3 - 6 = - 3\]

\[11)\ 50 \cdot \left( - \frac{1}{5}\sqrt{2} \right)^{2} = 50 \cdot \frac{1}{25} \cdot 2 =\]

\[= \frac{50 \cdot 2}{25} = 4\]

\[12)\ \sqrt{4 \cdot 5^{2} - 6^{2}} = \sqrt{4 \cdot 25 - 36} =\]

\[= \sqrt{100 - 36} = \sqrt{64} = 8\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам