\[\boxed{\text{373\ (373).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ x^{2} = 9\]
\[x = \pm 3\]
\[Ответ:x = 3;\ x = - 3.\]
\[2)\ x^{2} = \frac{36}{49}\]
\[x = \pm \frac{6}{7}\]
\[Ответ:x = \frac{6}{7};x = \ - \frac{6}{7}.\]
\[\boxed{\text{373.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{6}{x - 2} - \frac{x + 3}{x} = \frac{x + 6}{x^{2} - 2x}\]
\[\frac{6^{\backslash x}}{x - 2} - \frac{x + 3^{\backslash x - 2}}{x} -\]
\[- \frac{x + 6}{x(x - 2)} = 0\]
\[\frac{6 \cdot x - (x + 3)(x - 2) - (x + 6)}{x(x - 2)} = 0\]
\[\frac{6x - x^{2} + 2x - 3x + 6 - x - 6}{x(x - 2)} = 0\]
\[\frac{- x^{2} + 4x}{x(x - 2)} = 0\]
\[\frac{x( - x + 4)}{x(x - 2)} = 0\]
\[\left\{ \begin{matrix} x( - x + 4) = 0 \\ x(x - 2) \neq 0\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} x = 0 \\ x = 4 \\ x \neq 0 \\ x \neq 2 \\ \end{matrix} \right.\ \ \ \ \ \ \ x = 4\]
\[Ответ:x = 4.\]