\[\boxed{\text{365\ (365).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{x^{2} - y}{(x + 2)^{2} + (y - 4)^{2}} = 0\]
\[\left\{ \begin{matrix} x^{2} - y = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x + 2)^{2} + (y - 4)^{2} = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2}\ \\ x \neq - 2 \\ y \neq 4\ \ \ \ \\ \end{matrix} \right.\ \]
\[\boxed{\text{365.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{x^{3} + x^{2}}{x + 1}\]
\[y = \frac{x^{2}(x + 1)}{x + 1} = x^{2}\]
\[y = x^{2};\ \ при\ x \neq - 1\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[2)\ y = \frac{x^{4} - 4x^{2}}{x^{2} - 4}\]
\[y = \frac{x^{2}\left( x^{2} - 4 \right)}{x^{2} - 4} = x^{2}\]
\[y = x^{2};\ \ при\ x \neq 2,;\ x \neq - 2\ \ \]