\[\boxed{\text{364\ (364).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\frac{y - x^{2}}{(x - 1)^{2} + (y - 1)^{2}} = 0\]
\[\left\{ \begin{matrix} y - x^{2} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x - 1)^{2} + (y - 1)^{2} \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} y = x^{2} \\ x \neq 1\ \ \\ y \neq 1\ \ \\ \end{matrix} \right.\ \]
\[2)\ \frac{y - x^{2}}{y - x} = 0\]
\[\left\{ \begin{matrix} y - x^{2} = 0 \\ y - x \neq 0\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = x^{2} \\ y \neq x\ \ \\ \end{matrix} \right.\ \ \]
\[x \neq 0;\ \ \ x \neq 1\ \]
\[\boxed{\text{364.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = \left\{ \begin{matrix} - \frac{6}{x},\ \ \ если\ x \leq - 1\ \ \ \\ x^{2},\ \ если\ x > - 1 \\ \end{matrix} \right.\ \]
\[1)\ f( - 12) = - \frac{6}{- 12} = \frac{1}{2}\]
\[f( - 1) = - \frac{6}{- 1} = 6\]
\[f( - 0,9) = x^{2} = {0,9}^{2} = 0,81\]
\[f(3) = 3^{2} = 9\]
\[f(0) = 0\]
\[2)\ y = x^{2}\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[y = - \frac{6}{x}\]
\[x\] | \[2\] | \[3\] | \[- 2\] | \[- 3\] | \[6\] | \[- 6\] |
---|---|---|---|---|---|---|
\[y\] | \[- 3\] | \[- 2\] | \[3\] | \[2\] | \[- 1\] | \[1\] |
\[3)\ При\ 1 < a \leq 6.\]