Решебник по алгебре 8 класс Мерзляк ФГОС Задание 29

Авторы:
Год:2024
Тип:учебник
Серия:Алгоритм успеха

Задание 29

Выбери издание
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021

\[\boxed{\text{29\ (29).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[1)\ \frac{14a^{3}}{21a} = \frac{14a^{3}\ :7a}{21a\ :7a} = \frac{2a^{2}}{3}\]

\[2)\ \frac{8b^{3}c^{2}}{12bc^{3}} = \frac{8b^{3}c^{2}\ :4bc^{2}}{12bc^{3}\ :4bc^{2}} = \frac{2b^{2}}{3c}\]

\[3)\ \frac{5x}{20x} = \frac{5x\ :5x}{20x\ :5x} = \frac{1}{4}\]

\[4)\ \frac{24x^{2}y^{2}}{32xy} = \frac{24x^{2}y^{2}\ :8xy}{32xy\ :8xy} = \frac{3xy}{4}\]

\[5)\ \frac{4abc}{16ab^{4}} = \frac{4abc\ :4ab}{16ab^{4}\ :4ab} = \frac{c}{4b^{3}}\]

\[6)\ \frac{56m^{5}n^{7}}{42m^{5}n^{10}} =\]

\[= \frac{56m^{5}n^{7}\ :14m^{5}n^{7}}{42m^{5}n^{10}\ :14m^{5}n^{7}} = \frac{4}{3n^{3}}\]

\[7)\ \frac{- 10n^{10}}{5n^{4}} = - \frac{10n^{10}\ :5n^{4}}{5n^{4}\ :5n^{4}} =\]

\[= - 2n^{6}\]

\[8)\ \frac{3p^{4}q^{6}}{- 9p^{8}q^{7}} = - \frac{3p^{4}q^{6}\ :3p^{4}q^{6}}{9p^{8}q^{7}\ :3p^{4}q^{6}} =\]

\[= - \frac{1}{3p^{4}q}\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\text{29.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[1)\ \frac{14a^{3}}{21a} = \frac{14a^{3}\ :7a}{21a\ :7a} = \frac{2a^{2}}{3}\]

\[2)\ \frac{8b^{3}c^{2}}{12bc^{3}} = \frac{8b^{3}c^{2}\ :4bc^{2}}{12bc^{3}\ :4bc^{2}} = \frac{2b^{2}}{3c}\]

\[3)\ \frac{5x}{20x} = \frac{5x\ :5x}{20x\ :5x} = \frac{1}{4}\]

\[4)\ \frac{24x^{2}y^{2}}{32xy} = \frac{24x^{2}y^{2}\ :8xy}{32xy\ :8xy} = \frac{3xy}{4}\]

\[5)\ \frac{4abc}{16ab^{4}} = \frac{4abc\ :4ab}{16ab^{4}\ :4ab} = \frac{c}{4b^{3}}\]

\[6)\ \frac{56m^{5}n^{7}}{42m^{5}n^{10}} =\]

\[= \frac{56m^{5}n^{7}\ :14m^{5}n^{7}}{42m^{5}n^{10}\ :14m^{5}n^{7}} = \frac{4}{3n^{3}}\]

\[7)\ \frac{- 10n^{10}}{5n^{4}} = - \frac{10n^{10}\ :5n^{4}}{5n^{4}\ :5n^{4}} =\]

\[= - 2n^{6}\]

\[8)\ \frac{3p^{4}q^{6}}{- 9p^{8}q^{7}} = - \frac{3p^{4}q^{6}\ :3p^{4}q^{6}}{9p^{8}q^{7}\ :3p^{4}q^{6}} =\]

\[= - \frac{1}{3p^{4}q}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам