\[\boxed{\text{202\ (202).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[В\ данном\ случае\ выражение\ \]
\[не\ будет\ иметь\ смысла,\ если\]
\[знаменатель\ равен\ нулю.\]
\[1)\ \frac{6}{3x - 9}\]
\[3x - 9 = 0\]
\[3x = 9\]
\[x = 3\]
\[Ответ:при\ x = 3.\]
\[2)\ \frac{x^{2} + 1}{x^{2} - 1}\]
\[\frac{x^{2} + 1}{(x - 1)(x + 1)}\]
\[(x - 1)(x + 1) = 0\]
\[x = 1;\ \ \ \ x = - 1\]
\[Ответ:при\ x = 1\ и\ x = - 1.\]
\[3)\ \frac{x + 4}{3x^{2} + 12x}\]
\[3x^{2} + 12x = 0\]
\[3x(x + 4) = 0\]
\[3x = 0;\ \ \ \ \ \ x + 4 = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ \ x = - 4\]
\[Ответ:при\ x = 0;\ \ x = - 4.\]
\[4)\ \frac{8}{x + 7} + \frac{4}{x - 2}\]
\[x + 7 = 0\ \ \ \ \ \ \ \ \ \ \ \ x - 2 = 0\]
\[x = - 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 2\]
\[Ответ:при\ x = - 7;\ \ x = 2.\]
\[5)\ \frac{x}{x^{2} - 10x + 25}\]
\[x^{2} - 10x + 25 = 0\]
\[(x - 5)^{2} = 0\]
\[x = 5\]
\[Ответ:при\ x = 5.\]
\[6)\ \frac{x + 2}{(x + 10)(x - 12)}\]
\[x + 10 = 0;\ \ \ \ \ \ x - 12 = 0\]
\[x = - 10\ \ \ \ \ \ \ \ \ \ \ \ x = 12.\]
\[Ответ:при\ x = - 10;\ x = 12.\]