\[\boxed{\text{193\ (193).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (3x - 1)(4x + 5) -\]
\[- (2x + 3)(6x + 1) = 4\]
\[12x^{2} + 15x - 4x - 5 - 12x^{2} -\]
\[- 2x - 18x - 3 - 4 = 0\]
\[- 9x = 12\]
\[x = - \frac{12}{9}\]
\[x = - \frac{4}{3}\]
\[x = - 1\frac{1}{3}\]
\[Ответ:\ x = - 1\frac{1}{3}.\]
\[2)\ 8x(2x + 7) - (4x + 3)^{2} = 15\]
\[16x^{2} + 56x - 16x^{2} - 24x -\]
\[- 9 - 15 = 0\]
\[32x = 24\]
\[x = \frac{24}{32}\]
\[x = \frac{3}{4}\]
\[Ответ:x = \frac{3}{4}.\]
\[\boxed{\text{193.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3^{n + 2} - 2^{n + 2} + 3^{n} - 2^{n} =\]
\[= \left( 3^{n + 2} + 3^{n} \right) - \left( 2^{n + 2} - 2^{n} \right) =\]
\[= 3^{n}\left( 3^{2} + 3^{0} \right) - 2^{n}\left( 2^{2} + 2^{0} \right) =\]
\[= 3^{n} \cdot 10 - 2^{n} \cdot 5 =\]
\[= 3^{n} \cdot 10 - 2^{n - 1} \cdot 2 \cdot 5 =\]
\[= 10 \cdot \left( 3^{n} - 2^{n - 1} \right) - делится\ \]
\[нацело\ на\ 10,\ \]
\[так\ как\ один\ из\ множителей\]
\[равен\ 10.\]