\[\boxed{\text{168\ (168).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{8a^{2}}{a - 3b}\ :\frac{6a^{3}}{a^{2} - 9b^{2}} \cdot\]
\[\cdot \frac{3a}{4a + 12b} = 1\]
\[Упростим\ левую\ часть\ \]
\[тождества:\]
\[\frac{8a^{2}(a - 3b)(a + 3b) \cdot 3a}{(a - 3b) \cdot 6a^{3} \cdot 4(a + 3b)} = 1\]
\[\frac{2a^{2}}{2a^{2}} = 1\]
\[1 = 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{168.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1){\ (2x + 3)}^{2} - 2x(5 + 2x) = 10\]
\[4x^{2} + 12x + 9 - 10x - 4x^{2} -\]
\[- 10 = 0\]
\[2x = 10 - 9\]
\[2x = 1\]
\[x = \frac{1}{2} = 0,5\]
\[Ответ:\ x = 0,5.\]
\[2)\ (x - 2)(x - 3) -\]
\[- (x - 6)(x + 1) = 12\]
\[x^{2} - 3x - 2x + 6 - x^{2} -\]
\[- x + 6x + 6 = 12\]
\[0 \cdot x = 12 - 12\]
\[0x = 0\]
\[Ответ:x - любое\ число.\]