\[\boxed{\text{162\ (162).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x - \frac{1}{x} = 9;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[x^{2} + \frac{1}{x^{2}} = ?\]
\[Возведем\ обе\ части\ равенства\ \]
\[в\ квадрат:\]
\[\left( x - \frac{1}{x} \right)^{2} = 9^{2}\]
\[x^{2} - 2 + \frac{1}{x^{2}} = 81\]
\[x^{2} + \frac{1}{x^{2}} = 81 + 2\]
\[x^{2} + \frac{1}{x^{2}} = 83\]
\[Ответ:83.\]
\[\boxed{\text{162.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} + \frac{16}{x^{2}} = 41;\ \ \ \ \ \ x + \frac{4}{x} = ?\]
\[\left( x + \frac{4}{x} \right)^{2} = x^{2} + 8 + \frac{16}{x^{2}}\]
\[\left( x + \frac{4}{x} \right)^{2} = 41 + 8\]
\[\left( x + \frac{4}{x} \right)^{2} = 49\]
\[\left\{ \begin{matrix} x + \frac{4}{x} = 7\ \ \ \ \\ x + \frac{4}{x} = - 7 \\ \end{matrix} \right.\ \]
\[Ответ:7;\ - 7.\]