\[\boxed{\text{14\ (14).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[4a + 8b = 10\]
\[4 \cdot (a + 2b) = 10\]
\[a + 2b = \frac{10}{4} = \frac{5}{2}\]
\[1)\ 2b + a = \frac{5}{2} = 2,5\]
\[2)\ \frac{5}{a + 2b} = \frac{5}{\frac{5}{2}} = \frac{5 \cdot 2}{5} = 2\]
\[3)\ \frac{a^{2} + 4ab + 4b^{2}}{2a + 4b} =\]
\[= \frac{(a + 2b)^{2}}{2 \cdot (a + 2b)} = \frac{a + 2b}{2} = \frac{\frac{5}{2}}{2} =\]
\[= \frac{5}{4} = 1,25\]
\[\boxed{\text{14.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[4a + 8b = 10\]
\[4 \cdot (a + 2b) = 10\]
\[a + 2b = \frac{10}{4} = \frac{5}{2}\]
\[1)\ 2b + a = \frac{5}{2} = 2,5\]
\[2)\ \frac{5}{a + 2b} = \frac{5}{\frac{5}{2}} = \frac{5 \cdot 2}{5} = 2\]
\[3)\ \frac{a^{2} + 4ab + 4b^{2}}{2a + 4b} =\]
\[= \frac{(a + 2b)^{2}}{2 \cdot (a + 2b)} = \frac{a + 2b}{2} = \frac{\frac{5}{2}}{2} =\]
\[= \frac{5}{4} = 1,25\]