\[\boxed{\text{132\ (132).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{a - c}{b + c} + \frac{b - a}{a + c} + \frac{c - b}{a + b} = 1\]
\[Прибавим\ к\ обеим\ частям\ \]
\[равенства\ 3:\]
\[\frac{a - c}{b + c} + \frac{b - a}{a + c} + \frac{c - b}{a + b} + 3 = 1 + 3\]
\[\frac{a - c}{b + c} + 1 + \frac{b - a}{a + c} + 1 + \frac{c - b}{a + b} +\]
\[+ 1 = 4\]
\[Преобразуем\ левую\ часть\ \]
\[равенства:\]
\[\frac{a - c}{b + c} + \frac{b - a}{a + c} + \frac{c - b}{a + b} = \frac{a - c}{b + c} +\]
\[+ 1^{\backslash b + c} + \frac{b - a}{a + c} + 1^{\backslash a + c} + \frac{c - b}{a + b} +\]
\[+ 1^{\backslash a + b} =\]
\[= \frac{a - c + b + c}{b + c} + \frac{b - a + a + c}{a + c} +\]
\[+ \frac{c - b + a + b}{a + b} =\]
\[= \frac{a + b}{b + c} + \frac{b + c}{a + c} + \frac{c + a}{a + b}.\]
\[Тогда:\]
\[\frac{a + b}{b + c} + \frac{b + c}{a + c} + \frac{c + a}{a + b} = 4.\ \]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{132.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left\{ \begin{matrix} x + y = 8\ \ \ \ \ \\ 3x - 2y = 9 \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} x = 8 - y\ \ \ \ \ \\ 3x - 2y = 9 \\ \end{matrix}\ \right.\ \]
\[3 \cdot (8 - y) - 2y = 9\]
\[24 - 3y - 2y = 9\]
\[5y = 15\]
\[y = 3.\]
\[\left\{ \begin{matrix} x = 8 - y \\ y = 3\ \ \ \ \ \ \ \ \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\ \right.\ \]
\[\left\{ \begin{matrix} x = 8 - 3 \\ y = 3\ \ \ \ \ \ \ \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 5 \\ y = 3 \\ \end{matrix} \right.\ \right.\ \]
\[Ответ:x = 5;\ y = 3.\]
\[2)\ \left\{ \begin{matrix} 2x + 5y = 13\ \ \\ 3x - 5y = - 13 \\ \end{matrix} + \right.\ \]
\[5x = 0\]
\[x = 0\]
\[\left\{ \begin{matrix} x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x + 5y = 13 \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} x = 0\ \ \ \ \ \\ 5y = 13 \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 0\ \ \\ y = \frac{13}{5} \\ \end{matrix} \right.\ \right.\ \]
\[Ответ:x = 0;\ y = 2,6\text{.\ }\]