\[\boxed{\mathbf{Упражнения}\mathbf{\ }\mathbf{стр}\mathbf{.\ 210}}\]
\[\boxed{\mathbf{1.}}\]
\[Являются\ высказываниями:\]
\[1,\ 4,\ 6.\]
\[Не\ являются\ высказываниями:\ \ \]
\[2,\ 3,\ 5,\ 7.\]
\[\boxed{\mathbf{2.}}\]
\[A = \left\{ 5 < 6 \right\};\ \ \ \]
\[B = \left\{ 6 - простое\ число \right\}\]
\[1)\ ложное;\]
\[2)\ истинное;\]
\[3)\ ложное;\]
\[4)\ ложное;\]
\[5)\ ложное;\]
\[6)\ истинное.\]
\[\boxed{\mathbf{3.}}\]
\[1)\ \overline{A} \Longrightarrow B\]
\[A\] | \[\overline{A}\] | \[B\] | \[\overline{A} \Longrightarrow B\] |
---|---|---|---|
\[1\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[1\] |
\[2)\ (A \vee B) \land C\]
\[A\] | \[B\] | \[C\] | \[A \vee B\] | \[(A \vee B) \land C\] |
---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[1\] | \[0\] |
\[1\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[0\] | \[0\] | \[0\] | \[0\] |
\[3)\ (A \land B) \Longrightarrow C\]
\[A\] | \[B\] | \[C\] | \[A \land B\] | \[(A \land B) \Longrightarrow C\] |
---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[1\] | \[0\] |
\[1\] | \[0\] | \[1\] | \[0\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[1\] | \[1\] | \[0\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[0\] | \[1\] | \[0\] | \[1\] |
\[0\] | \[0\] | \[0\] | \[0\] | \[1\] |
\[4)\ (A \Longrightarrow B) \land (B \vee C)\]
\[A\] | \[B\] | \[C\] | \[A \Longrightarrow B\] | \[B \vee C\] | \[(A \Longrightarrow B) \land (B \vee C)\] |
---|---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[1\] | \[0\] | \[1\] | \[0\] |
\[1\] | \[0\] | \[0\] | \[0\] | \[0\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[0\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[0\] | \[0\] | \[1\] | \[0\] | \[0\] |
\[5)\ (A \land \overline{C}) \Longrightarrow B\]
\[A\] | \[B\] | \[C\] | \[\overline{C}\] | \[A \land \overline{C}\] | \[(A \land \overline{C}) \Longrightarrow B\] |
---|---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[1\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[1\] | \[0\] | \[1\] |
\[0\] | \[0\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[0\] | \[0\] | \[1\] | \[0\] | \[1\] |
\[\boxed{\mathbf{4.}}\]
\[1)\ \overline{\overline{A}} = A\]
\[A\] | \[\overline{A}\] | \[\overline{\overline{A}}\] |
---|---|---|
\[0\] | \[1\] | \[0\] |
\[1\] | \[0\] | \[1\] |
\[2)\ A \land A = A\]
\[A\] | \[A\] | \[A \land A\] |
---|---|---|
\[0\] | \[0\] | \[0\] |
\[1\] | \[1\] | \[1\] |
\[3)\ A \vee B = B \vee A\]
\[A\] | \[B\] | \[A \vee B\] | \[B \vee A\] |
---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[0\] | \[0\] | \[0\] |
\[4)\ A \vee (B \land C) =\]
\[= (A \vee B) \land (A \vee C)\]
\[A\] | \[B\] | \[C\] | \[B \land C\] | \[A \vee (B \land C)\] |
---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[1\] | \[0\] | \[1\] | \[0\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[0\] | \[1\] |
\[0\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[0\] | \[0\] |
\[0\] | \[0\] | \[1\] | \[0\] | \[0\] |
\[0\] | \[0\] | \[0\] | \[0\] | \[0\] |
\[A\] | \[B\] | \[C\] | \[A \vee B\] | \[A \vee C\] | \[(A \vee B) \land (A \vee C)\] |
---|---|---|---|---|---|
\[1\] | \[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[1\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[1\] | \[1\] | \[1\] | \[1\] |
\[0\] | \[1\] | \[0\] | \[1\] | \[0\] | \[0\] |
\[0\] | \[0\] | \[1\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[0\] | \[0\] | \[0\] | \[0\] | \[0\] |
\[5)\ \overline{A \vee B} = \overline{A} \land \overline{B}\]
\[A\] | \[B\] | \[A \vee B\] | \[\overline{A \vee B}\] |
---|---|---|---|
\[1\] | \[1\] | \[1\] | \[0\] |
\[1\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[0\] |
\[0\] | \[0\] | \[0\] | \[1\] |
\[A\] | \[B\] | \[\overline{A}\] | \[\overline{B}\] | \[\overline{A} \land \overline{B}\] |
---|---|---|---|---|
\[1\] | \[1\] | \[0\] | \[0\] | \[0\] |
\[1\] | \[0\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[0\] | \[0\] |
\[0\] | \[0\] | \[1\] | \[1\] | \[1\] |
\[6)\ (A \Longrightarrow B) = \overline{B} \Longrightarrow \overline{A}\]
\[A\] | \[B\] | \[A \Longrightarrow B\] |
---|---|---|
\[1\] | \[1\] | \[1\] |
\[1\] | \[0\] | \[0\] |
\[0\] | \[1\] | \[1\] |
\[0\] | \[0\] | \[1\] |
\[A\] | \[B\] | \[\overline{A}\] | \[\overline{B}\] | \[\overline{B} \Longrightarrow \overline{A}\] |
---|---|---|---|---|
\[1\] | \[1\] | \[0\] | \[0\] | \[1\] |
\[1\] | \[0\] | \[0\] | \[1\] | \[0\] |
\[0\] | \[1\] | \[1\] | \[0\] | \[1\] |
\[0\] | \[0\] | \[1\] | \[1\] | \[1\] |