\[\boxed{\text{97\ (97).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\boxed{\text{97.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x + 1}{x^{2} - x} - \frac{x + 2}{x^{2} - 1} =\]
\[= \frac{x + 1^{\backslash x - 1}}{x \cdot (x - 1)} - \frac{x + 2^{\backslash x}}{(x - 1) \cdot (x + 1)} =\]
\[= \frac{x^{2} + 2x + 1 - x^{2} - 2x}{x \cdot (x - 1) \cdot (x + 1)} =\]
\[= \frac{1}{x \cdot (x - 1) \cdot (x + 1)} =\]
\[= \frac{1}{x \cdot (x^{2} - 1)}\]
\[\frac{1}{- 1,5 \cdot (({- 1,5)}^{2} - 1)} =\]
\[= \frac{1}{- 1,5 \cdot (2,25 - 1)} =\]
\[= \frac{1}{- 1,5 \cdot 1,25} = \frac{1}{- \frac{3}{2} \cdot \frac{5}{4}} = - \frac{8}{15}.\]
\[\textbf{б)}\ \frac{x + 2}{x^{2} + 3x} - \frac{1 + x}{x^{2} - 9} =\]
\[= \frac{x + 2^{\backslash x - 3}}{x \cdot (x + 3)} - \frac{1 + x^{\backslash x}}{(x - 3) \cdot (x + 3)} =\]
\[= \frac{x^{2} - 3x + 2x - 6 - x^{2} - x}{x \cdot (x + 3) \cdot (x - 3)} =\]
\[= \frac{- 2x - 6}{x \cdot \left( x^{2} - 9 \right)} = \frac{2x + 6}{x \cdot \left( 9 - x^{2} \right)} =\]
\[\frac{2}{- 1,5 \cdot \left( 3 - ( - 1,5) \right)} =\]
\[= \frac{2}{- 1,5 \cdot 4,5} = - \frac{2}{6,75} =\]
\[= - \frac{200}{675} = - \frac{8}{27}.\]