Решебник по алгебре 8 класс Макарычев ФГОС Задание 95

Авторы:
Год:2021
Тип:учебник

Задание 95

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{95\ (95).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решение.

\[\textbf{а)}\ \frac{x + 1}{x^{2} - x} - \frac{x + 2}{x^{2} - 1} =\]

\[= \frac{1}{x \cdot (x - 1) \cdot (x + 1)} =\]

\[= \frac{1}{x \cdot (x^{2} - 1)}\]

\[\frac{1}{- 1,5 \cdot (({- 1,5)}^{2} - 1)} =\]

\[= \frac{1}{- 1,5 \cdot (2,25 - 1)} =\]

\[= \frac{1}{- 1,5 \cdot 1,25} = \frac{1}{- \frac{3}{2} \cdot \frac{5}{4}} = - \frac{8}{15}.\]

\[\textbf{б)}\ \frac{x + 2}{x^{2} + 3x} - \frac{1 + x}{x^{2} - 9} =\]

\[\frac{2}{- 1,5 \cdot \left( 3 - ( - 1,5) \right)} =\]

\[= \frac{2}{- 1,5 \cdot 4,5} = - \frac{2}{6,75} = - \frac{200}{675} =\]

\[= - \frac{8}{27}.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{95.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

Пояснение.

Решение.

\[\textbf{а)}\ \frac{b - 6}{4 - b^{2}} + \frac{2}{2b - b^{2}} =\]

\[= \frac{b - 6^{\backslash b}}{(2 - b) \cdot (2 + b)} + \frac{2^{\backslash 2 + b}}{b \cdot (2 - b)} =\]

\[= \frac{b^{2} - 6b + 4 + 2b}{b \cdot (2 - b) \cdot (2 + b)} =\]

\[= \frac{b^{2} - 4b + 4}{b \cdot (2 - b) \cdot (2 + b)} =\]

\[= \frac{(b - 2)^{2}}{b \cdot (2 - b) \cdot (2 + b)} =\]

\[\textbf{б)}\ \frac{b}{ab - 5a^{2}} - \frac{15b - 25a}{b^{2} - 25a^{2}} =\]

\[= \frac{b^{2} + 5ab - 15ab + 25a^{2}}{a \cdot (b + 5a) \cdot (b - 5a)} =\]

\[= \frac{b^{2} - 10ab + 25a^{2}}{a \cdot (b + 5a) \cdot (b - 5a)} =\]

\[= \frac{b - 5a}{a \cdot (b + 5a)}\]

\[\textbf{в)}\ \frac{x - 12a}{x^{2} - 16a^{2}} - \frac{4a}{4ax - x^{2}} =\]

\[= \frac{x^{2} - 12ax + 4ax + 16a^{2}}{x \cdot (x - 4a) \cdot (x + 4a)} =\]

\[= \frac{x^{2} - 8ax + 16a^{2}}{x \cdot (x - 4a) \cdot (x + 4a)} =\]

\[= \frac{x - 4a}{x \cdot (x + 4a)}\]

\[\textbf{г)}\ \frac{a - 30y}{a^{2} - 100y^{2}} - \frac{10y}{10ay - a^{2}} =\]

\[= \ \frac{a^{2} - 30ay + 10ya + 100y^{2}}{a \cdot (a - 10y) \cdot (a + 10y)} =\]

\[= \frac{a^{2} - 20ay + 100y^{2}}{a \cdot (a - 10y) \cdot (a + 10y)} =\]

\[= \frac{a - 10y}{a \cdot (a + 10y)}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам