Решебник по алгебре 8 класс Макарычев ФГОС Задание 879

Авторы:
Год:2021
Тип:учебник

Задание 879

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение

\[\boxed{\text{879\ (879).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Неравенство, задающее числовой промежуток. Обозначение и название числового промежутка. Изображение числового промежутка на координатной прямой.
\[\mathbf{a \leq x \leq b}\]

\[\left\lbrack \mathbf{a;\ b} \right\rbrack\mathbf{-}\]

\[числовой\ отрезок\ \]

\[\mathbf{a < x < b}\]

\[\left( \mathbf{a;\ b} \right)\mathbf{- \ }\]

\[\mathbf{интервал}\]

\[\mathbf{a \leq x < b}\]

\[\left\lbrack \mathbf{a;\ b} \right)\mathbf{-}\]

\[\mathbf{полуинтервал}\]

\[\mathbf{a < x \leq b}\]

\[\left( \mathbf{a;\ b} \right\rbrack\mathbf{-}\]

\[\mathbf{полуинтервал}\]

\[\mathbf{x \geq a}\]

\[\left\lbrack \mathbf{a; + \infty} \right)\mathbf{-}\]

\[\mathbf{числовой\ луч}\]

\[\mathbf{x > a}\]

\[\mathbf{(a; + \infty) -}\]

\[\mathbf{открытый\ числовой\ }\]

\[\mathbf{луч}\]

\[\mathbf{x \leq b}\]

\[\left( \mathbf{- \infty;\ b} \right\rbrack\mathbf{-}\]

\[\mathbf{числовой\ луч}\]

\[\mathbf{x < b}\]

\[\left( \mathbf{- \infty;\ b} \right)\mathbf{-}\]

\[\mathbf{открытый\ числовой\ }\]

\[\mathbf{луч}\]

Решением системы неравенств с одной переменной называется значение переменной, при котором верно каждое из неравенств системы.

При решении используем следующее:

1. Если в неравенстве перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получится неравенство, равносильное данному.

2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.

Решение.

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{879.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[x^{2} - 4x + 1 = ?\]

\[при\ x = \frac{1}{4}:\ \ \ \]

\[\left( \frac{1}{4} \right)^{2} - 4 \cdot \frac{1}{4} + 1 =\]

\[= \frac{1}{16} - 1 + 1 = \frac{1}{16};\]

\[при\ \ x = - 3:\ \ \ \ \ \]

\[( - 3)^{2} - 4 \cdot ( - 3) + 1 =\]

\[= 9 + 12 + 1 = 22;\]

\[при\ x = 2 - \sqrt{3}:\ \ \]

\[\left( 2 - \sqrt{3} \right)^{2} - 4\left( 2 - \sqrt{3} \right) + 1 =\]

\[= 4 - 4\sqrt{3} + 3 - 8 +\]

\[+ 4\sqrt{3} + 1 = 0.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам