\[\boxed{\text{879\ (879).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Неравенство, задающее числовой промежуток. | Обозначение и название числового промежутка. | Изображение числового промежутка на координатной прямой. |
---|---|---|
\[\mathbf{a \leq x \leq b}\] |
\[\left\lbrack \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[числовой\ отрезок\ \] |
|
\[\mathbf{a < x < b}\] |
\[\left( \mathbf{a;\ b} \right)\mathbf{- \ }\] \[\mathbf{интервал}\] |
|
\[\mathbf{a \leq x < b}\] |
\[\left\lbrack \mathbf{a;\ b} \right)\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{a < x \leq b}\] |
\[\left( \mathbf{a;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{полуинтервал}\] |
|
\[\mathbf{x \geq a}\] |
\[\left\lbrack \mathbf{a; + \infty} \right)\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x > a}\] |
\[\mathbf{(a; + \infty) -}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
|
\[\mathbf{x \leq b}\] |
\[\left( \mathbf{- \infty;\ b} \right\rbrack\mathbf{-}\] \[\mathbf{числовой\ луч}\] |
|
\[\mathbf{x < b}\] |
\[\left( \mathbf{- \infty;\ b} \right)\mathbf{-}\] \[\mathbf{открытый\ числовой\ }\] \[\mathbf{луч}\] |
Решением системы неравенств с одной переменной называется значение переменной, при котором верно каждое из неравенств системы.
При решении используем следующее:
1. Если в неравенстве перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получится неравенство, равносильное данному.
2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.
3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.
Решение.
\[\boxed{\text{879.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[x^{2} - 4x + 1 = ?\]
\[при\ x = \frac{1}{4}:\ \ \ \]
\[\left( \frac{1}{4} \right)^{2} - 4 \cdot \frac{1}{4} + 1 =\]
\[= \frac{1}{16} - 1 + 1 = \frac{1}{16};\]
\[при\ \ x = - 3:\ \ \ \ \ \]
\[( - 3)^{2} - 4 \cdot ( - 3) + 1 =\]
\[= 9 + 12 + 1 = 22;\]
\[при\ x = 2 - \sqrt{3}:\ \ \]
\[\left( 2 - \sqrt{3} \right)^{2} - 4\left( 2 - \sqrt{3} \right) + 1 =\]
\[= 4 - 4\sqrt{3} + 3 - 8 +\]
\[+ 4\sqrt{3} + 1 = 0.\]