\[\boxed{\text{66\ (66).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Тождество:\]
\[\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}.\]
Решение.
\[\textbf{а)}\ \frac{a + b}{x} = \frac{a}{x} + \frac{b}{x}\]
\[\textbf{б)}\ \frac{2a^{2} + a}{y} = \frac{2a^{2}}{y} + \frac{a}{y}\]
\[\textbf{в)}\ \frac{x^{2} + 6y^{2}}{2xy} = \frac{x^{2}}{2xy} + \frac{6y^{2}}{2xy} =\]
\[= \frac{x}{2y} + \frac{3y}{x}\]
\[\textbf{г)}\ \frac{12a + y^{2}}{6ay} = \frac{12a}{6ay} + \frac{y^{2}}{6ay} =\]
\[= \frac{2}{y} + \frac{y}{6a}\]
\[\boxed{\text{66.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x^{2}}{(x - 5)^{2}} - \frac{25}{(5 - x)^{2}} =\]
\[= \frac{x^{2}}{(x - 5)^{2}} - \frac{25}{(x - 5)^{2}} =\]
\[= \frac{x + 5}{x - 5}\]
\[\textbf{б)}\ \ \frac{x^{2} + 25}{(x - 5)^{3}} + \frac{10x}{(5 - x)^{3}} =\]
\[= \frac{x^{2} + 25}{(x - 5)^{3}} - \frac{10x}{(x - 5)^{3}} =\]
\[= \frac{1}{x - 5}\]