\[\boxed{\text{652\ (652).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ a^{2} + 4a + 11 =\]
\[= a^{2} + 4a + 4 + 7 =\]
\[= (a + 2)^{2} + 7 > 0\]
\[так\ как\ (a + 2)^{2} >\]
\[> 0\ при\ всех\ a,\ и\ 7\ >\]
\[> 0,\ что\ и\ требовалось\ \]
\[доказать\]
\[\textbf{б)}\frac{x^{2} - 2x + 7}{19} =\]
\[= \frac{x^{2} - 2x + 1 + 6}{19} =\]
\[= \frac{(x - 1)^{2} + 6}{19} =\]
\[= \frac{(x - 1)^{2}}{19} + \frac{6}{19} > 0,\]
\[так\ как\frac{(x - 1)^{2}}{19} > 0\ при\ всех\ \]
\[x\ и\ \frac{6}{19} > 0 - что\ \]
\[и\ требовалось\ доказать.\]
\[\textbf{в)}\ m^{2} - 4m + 51 =\]
\[= m^{2} - 4m + 4 + 47 =\]
\[= (m - 2)^{2} + 47 > 0,\]
\[так\ как\ (m - 2)^{2} > 0\ при\ \]
\[всех\ m\ и\ 47 > 0 - что\ \]
\[и\ требовалось\ доказать.\]
\[\textbf{г)}\frac{p^{2} - 6p + 18}{p^{2} + 1} =\]
\[= \frac{p^{2} - 6p + 9 + 9}{p^{2} + 1} =\]
\[= \frac{(p - 3)^{2} + 9}{p^{2} + 1} > 0,\]
\[так\ как\ (p - 3)^{2} > 0\ при\ \]
\[всех\ p\ и\ p^{2} > 0,\ 9 > 0,\ 1 > 0 -\]
\[что\ и\ требовалось\ доказать.\]
\[\textbf{д)}\ 2b^{2} - 8b + 20 =\]
\[= 2 \cdot \left( b^{2} - 4b + 10 \right) =\]
\[= 2 \cdot \left( b^{2} - 4b + 4 + 6 \right) =\]
\[= 2 \cdot \left( (b - 2)^{2} + 6 \right) > 0,\ \]
\[так\ как\ (b - 2)^{2} > 0\ при\ \]
\[всех\ b\ и\ 6 > 0,\ 2 > 0 -\]
\[что\ и\ требовалось\ доказать.\]
\[\textbf{е)}\frac{2c^{2} + 18}{c^{2} + 12c + 40} =\]
\[= \frac{2 \cdot \left( c^{2} + 9 \right)}{c^{2} + 12c + 36 + 4} =\]
\[= \frac{2 \cdot \left( c^{2} + 9 \right)}{(c + 6)^{2} + 4} > 0,\ так\ как\]
\[\ c^{2} > 0\ при\ любых\ c,\ \]
\[(c + 6)^{2} > 0\ при\ любых\ c,\ \]
\[2 > 0,\ 4 > 0 - что\ \]
\(и\ требовалось\ доказать.\)
\[\boxed{\text{652.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Пусть\ \text{x\ }\frac{км}{ч} - скорость\ \]
\[поезда\ по\ расписанию,\ \]
\[тогда\ (x + 10)\ \frac{км}{ч} -\]
\[скорость\ поезда\ после\ \]
\[увеличения.\ \]
\[По\ условию\ задачи\ известно,\ \]
\[что\ скорость\ была\ \]
\[увеличена\ на\ перегоне\]
\[в\ 720\ км.\]
\[Составим\ уравнение:\]
\[\frac{720}{x} - \frac{720}{x + 10} = 1\]
\[720 \cdot (x + 10) - 720x =\]
\[= x(x + 10)\]
\[720x + 7200 - 720x =\]
\[= x^{2} + 10x\]
\[x^{2} + 10x - 7200 = 0\]
\[D = 25 + 7200 = 7225\]
\[x_{1} = - 5 - 85 =\]
\[= - 90\ (не\ подходит\ по\ условию).\]
\[x_{2} = - 5 + 85 =\]
\[= 80\ \left( \frac{км}{ч} \right) - скорость\]
\[\ поезда\ по\ расписанию.\]
\[Ответ:80\ \frac{км}{ч}\text{.\ }\]