\[\boxed{\text{647\ (647).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[(a - 1)x^{2} + 2ax + a + 1 = 0\]
\[1.\ при\ a = 1:\ \ \]
\[(1 - 1)x^{2} + 2 \cdot 1 \cdot x + 1 + 1 = 0\]
\[0 \cdot x^{2} + 2x + 2 = 0\]
\[2x = - 2\]
\[x = - 1\]
\[2.\ при\ a \neq 1:\]
\[D = 4a^{2} - 4 \cdot (a - 1)(a + 1) =\]
\[= 4a^{2} - 4a^{2} + 4 = 4\]
\[x_{1,2} = \frac{- 2a \pm 2}{2 \cdot (a - 1)}\]
\[x_{1} = \frac{- 2 \cdot (a + 1)}{2 \cdot (a - 1)} = \frac{- 1 - a}{a - 1}\]
\[x_{2} = \frac{- 2 \cdot (a - 1)}{2 \cdot (a - 1)} = - 1\ \]
\[\boxed{\text{647.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ если\ a > 0,\ b < 0:\ \]
\[\frac{3ab}{a^{2} + b^{2}} \Longrightarrow 3ab < 0;\ \ \ \ \]
\[a^{2} + b^{2} > 0,\]
\[то\ есть:\ \ \ \ \ \frac{3\text{ab}}{a^{2} + b^{2}} < 0.\]
\[\textbf{б)}\ если\ a < 0,\ b < 0:\]
\[\frac{5a^{3}b^{2}}{a + b} \Longrightarrow 5a^{3}b^{2} < 0;\ \ \ \]
\[\ a + b < 0,\ \]
\[то\ есть:\ \ \ \ \ \frac{5a^{3}b^{2}}{a + b} > 0.\ \]