Решебник по алгебре 8 класс Макарычев ФГОС Задание 632

Авторы:
Год:2021
Тип:учебник

Задание 632

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение

\[\boxed{\text{632\ (632).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[Пусть\ \text{x\ }ч - потребуется\ \]

\[второму\ крану,\ тогда\ \]

\[(x + 5)\ ч - первому\ крану.\ \]

\[Известно,\ что\ при\ совместной\ \]

\[разгрузке\ работа\ закончилась\]

\[через\ 6\ часов.\ \]

\[Составим\ уравнение:\]

\[1\ :\left( \frac{1}{x} + \frac{1}{x + 5} \right) = 6\]

\[1\ :\left( \frac{x + 5 + x}{x^{2} + 5x} \right) = 6\]

\[\frac{x^{2} + 5x}{2x + 5} = 6\]

\[x^{2} + 5x = 6 \cdot (2x + 5)\]

\[x^{2} + 5x - 12x - 30 = 0\]

\[x^{2} - 7x - 30 = 0\]

\[D = 49 + 120 = 169\]

\[x_{2} = \frac{7 + 13}{2} = 10\ (ч) -\]

\[потребуется\ второму\ крану.\]

\[x + 5 = 10 + 5 = 15\ (ч) -\]

\[потребуется\ первому\ крану.\]

\[Ответ:15\ ч\ и\ 10\ ч.\ \]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{632.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[\textbf{а)}\ \frac{2x - 5}{x + 5} - 4 = 0\ \ \ \ \ \ | \cdot (x + 5)\]

\[x \neq - 5\]

\[2x - 5 - 4 \cdot (x + 5) = 0\]

\[2x - 5 - 4x - 20 = 0\]

\[- 2x - 25 = 0\]

\[- 2x = 25\]

\[x = - \frac{25}{2}\]

\[x = - 12,5\]

\[Ответ:\ x = - 12,5.\]

\[\textbf{д)}\ \frac{8}{x} = 3x + 2\ \ \ \ \ \ | \cdot x,\ \ x \neq 0\]

\[8 = x \cdot (3x + 2)\]

\[8 = 3x^{2} + 2x\]

\[3x^{2} + 2x - 8 = 0\]

\[D = 4 + 4 \cdot 3 \cdot 8 = 4 + 96 = 100\]

\[x_{1,2} = \frac{- 2 \pm \sqrt{100}}{2 \cdot 3} = \frac{- 2 \pm 10}{6}\]

\[x_{1} = - 2;\ \ x_{2} = \frac{8}{6} = \frac{4}{3} = 1\frac{1}{3}\]

\[Ответ:\ x = - 2,\ x = 1\frac{1}{3}.\]

\[\textbf{б)}\frac{12}{7 - x} = x\ \ \ \ \ \ \ | \cdot (7 - x)\]

\[x \neq 7\]

\[12 = x(7 - x)\]

\[12 = 7x - x^{2}\]

\[x^{2} - 7x + 12 = 0\]

\[D = 49 - 4 \cdot 12 = 49 - 48 = 1\]

\[x_{1,2} = \frac{7 \pm \sqrt{1}}{2} = \frac{7 \pm 1}{2}\]

\[x_{1} = 4;\ \ x_{2} = 3\]

\[Ответ:\ x = 3,\ x = 4\text{.\ }\]

\[\textbf{е)}\frac{x^{2} + 4x}{x + 2} = \frac{2x}{3}\ \ \ \ \ \ | \cdot 3 \cdot (x + 2)\]

\[x \neq - 2\]

\[3 \cdot \left( x^{2} + 4x \right) = 2x \cdot (x + 2)\]

\[3x^{2} + 12x = 2x^{2} + 4x\]

\[x^{2} + 8x = 0\]

\[x \cdot (x + 8) = 0\]

\[x = 0,\ \ x = - 8\]

\[Ответ:\ x = 0,\ x = - 8.\]

\[\textbf{в)}\ \frac{x^{2} - 4}{4x} = \frac{3x - 2}{2x}\ \ \ \ \ \ \ \ \ \ | \cdot 4x\]

\[x \neq 0\]

\[x^{2} - 4 = 2 \cdot (3x - 2)\]

\[x^{2} - 4 = 6x - 4\]

\[x^{2} - 6x = 0\]

\[x(x - 6) = 0\]

\[x \neq 0,\ \ x = 6\]

\[Ответ:\ x = 6.\]

\[\textbf{ж)}\ \frac{2x^{2} - 5x + 3}{10x - 5} = 0\ \ \ | \cdot (10x - 5)\]

\[x \neq 0,5\]

\[2x^{2} - 5x + 3 = 0\]

\[D = 25 - 4 \cdot 2 \cdot 3 = 25 - 24 = 1\]

\[x_{1,2} = \frac{5 \pm \sqrt{1}}{2 \cdot 2} = \frac{5 \pm 1}{4}\]

\[x_{1} = \frac{6}{4} = \frac{3}{2} = 1,5\]

\[x_{2} = 1\]

\[Ответ:\ x = 1;x = 1,5.\]

\[\textbf{г)}\frac{10}{2x - 3} = x - 1\ \ \ \ \ \ | \cdot (2x - 3)\]

\[x \neq 1,5\]

\[10 = (2x - 3)(x - 1)\]

\[10 = 2x^{2} - 2x - 3x + 3\]

\[2x^{2} - 5x + 3 - 10 = 0\]

\[2x^{2} - 5x - 7 = 0\]

\[D = 25 - 4 \cdot 2 \cdot ( - 7) = 25 + 56 = 81\]

\[x_{1,2} = \frac{5 \pm \sqrt{81}}{2 \cdot 2} = \frac{5 \pm 9}{4}\]

\[x_{1} = - 1;\ \ x_{2} = \frac{14}{4} = \frac{7}{2} = 3,5\]

\[Ответ:x = - 1,\ x = 3,5.\ \]

\[\textbf{з)}\ \frac{4x^{3} - 9x}{x + 1,5} = 0\ \ \ \ \ \ \ \ | \cdot (x + 1,5)\]

\[x \neq - 1,5\]

\[4x^{3} - 9x = 0\]

\[x \cdot \left( 4x^{2} - 9 \right) = 0\]

\[x = 0,\ \ 4x^{2} = 9\]

\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x^{2} = \frac{9}{4}\]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 1,5\]

\[Ответ:x = 0,\ x = 1,5.\ \]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам