\[\boxed{\text{59\ (59).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ при\ a = 10,25:\]
\[10,25 + 6 = 16,25.\]
\[\textbf{б)}\ при\ b = 3,5:\]
\[\frac{3}{b - 3} = \frac{3}{3,5 - 3} = \frac{3}{0,5} = \frac{30}{5} = 6.\]
\[\boxed{\text{59.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\frac{16}{x - 4} - \frac{x^{2}}{x - 4} = \frac{16 - x^{2}}{x - 4} =\]
\[\textbf{б)}\ \frac{25}{a + 5} - \frac{a^{2}}{a + 5} = \frac{25 - a^{2}}{a + 5} =\]
\[\textbf{в)}\frac{3a - 1}{a^{2} - b^{2}} - \frac{3b - 1}{a^{2} - b^{2}} =\]
\[= \frac{3a - 1 - 3b + 1}{a^{2} - b^{2}} = \frac{3a - 3b}{a^{2} - b^{2}} =\]
\[\textbf{г)}\ \frac{x - 3}{x^{2} - 64} + \frac{11}{x^{2} - 64} =\]
\[= \frac{x - 3 + 11}{x^{2} - 64} =\]
\[\textbf{д)}\ \frac{2a + b}{(a - b)^{2}} + \frac{2b - 5a}{(a - b)^{2}} =\]
\[= \frac{2a + b + 2b - 5a}{(a - b)^{2}} = \frac{3b - 3a}{(a - b)^{2}} =\]
\[\textbf{е)}\ \frac{13x + 6y}{(x + y)^{2}} - \frac{11x + 4y}{(x + y)^{2}} =\]
\[= \frac{13x + 6y - 11x - 4y}{(x + y)^{2}} =\]
\[= \frac{2}{x + y}\]