\[\boxed{\text{576\ (576).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\frac{8a^{3} - 27}{9 - 12a + 4a^{2}} =\]
\[= \frac{(2a - 3)\left( 4a^{2} + 6a + 9 \right)}{(2a - 3)^{2}} =\]
\[= \frac{4a^{2} + 6a + 9}{2a - 3}\]
\[\textbf{б)}\frac{ax - 2x - 4a + 8}{3a - 6 - ax + 2x} =\]
\[= \frac{x(a - 2) - 4(a - 2)}{3(a - 2) - x(a - 2)} =\]
\[= \frac{(a - 2)(x - 4)}{(a - 2)(3 - x)} = \frac{x - 4}{3 - x}\ \]
\(\boxed{\text{576.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\)
Пояснение.
Умножим левую и правую части уравнений на НОК знаменателей.
Вынесем за скобки общий множитель.
Произведение равно нулю тогда и только тогда, когда один из множителей равен 0.
Решение.