\[\boxed{\text{550\ (550).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} - 8x + 9 = 0\]
\[D_{1} = 4^{2} - 9 = 16 - 9 = 7\]
\[x_{1} = 4 + \sqrt{7} \approx 6,65;\]
\[x_{2} = 4 - \sqrt{7} \approx 1,35.\]
\[Ответ:x = 6,65;\ \ x = 1,35.\]
\[\textbf{б)}\ 2y^{2} - 8y + 5 = 0\]
\[D_{1} = 4^{2} - 2 \cdot 5 = 16 - 10 = 6\]
\[y_{1} = \frac{4 + \sqrt{6}}{2} \approx 3,22;\ \ \]
\[y_{2} = \frac{4 - \sqrt{6}}{2} \approx 0,78.\ \]
\[Ответ:y = 0,78;\ \ y = 3,22.\]
\[\boxed{\text{550.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Перенесем все числа влево, приравняем уравнение к нулю.
Избавимся от дробных чисел: умножим на НОК знаменателей все слагаемые.
Решение.
\[\textbf{а)}\ \frac{1}{7}x^{2} = 2x - 7\ \ \ \ \ \ | \cdot 7\]
\[x^{2} - 14x + 49 = 0\]
\[D = 49 - 49 = 0\]
\[x = \frac{7}{1} = 7\]
\[Ответ:x = 7.\]
\[\textbf{б)}\ x^{2} + \frac{6}{5} = 2,6x\ \ \ \ \ \ \ \ \ | \cdot 5\]
\[5x^{2} - 13x + 6 = 0\]
\[D = 169 - 120 = 49\]
\[x_{1} = \frac{13 + 7}{10} = 2;\ \ \ \ \ \]
\[x_{2} = \frac{13 - 7}{10} = \frac{6}{10} = 0,6\]
\[Ответ:x = 2;\ \ x = 0,6.\]
\[\textbf{в)}\ 4x^{2} = 7x + 7,5\ \ \ \ \ \ \ \ | \cdot 2\]
\[8x^{2} - 14x - 15 = 0\]
\[D = 49 + 120 = 169\]
\[x_{1} = \frac{7 + 13}{8} = \frac{20}{8} = 2,5;\ \ \ \ \]
\[\ x_{2} = \frac{7 - 13}{8} = - \frac{6}{8} = - \frac{3}{4} =\]
\[= - 0,75\]
\[Ответ:x = 2,5;\ \ \ x = - 0,75.\]
\[\textbf{г)}\ 6x^{2} - 2 = x\ \]
\[6x^{2} - x - 2 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3};\ \ \ \]
\[\ x_{2} = \frac{1 - 7}{12} = - \frac{6}{12} = - \frac{1}{2} =\]
\[= - 0,5\]
\[Ответ:x = \frac{2}{3};\ \ x = - 0,5.\]