\[\boxed{\text{548\ (549).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} - 2x - 1 = 0\]
\[x^{2} = 2x + 1\]
\[\left\{ \begin{matrix} y = x^{2}\text{\ \ \ \ \ \ \ \ } \\ y = 2x + 1 \\ \end{matrix} \right.\ \]
\[y = x^{2}\]
\[x\] | \[0\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[y = 2x + 1\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[1\] | \[3\] |
\[x^{2} - 2x - 1 = 0\]
\[D = 4 + 4 = 8\]
\[x_{1} = \frac{2 - \sqrt{8}}{2} = \frac{2 - 2\sqrt{2}}{2} = - 0,4;\]
\[x_{2} = \frac{2 + \sqrt{8}}{2} = \frac{2 + 2\sqrt{2}}{2} = 2,4.\]
\[Ответ:x = - 0,4;\ \ x = 2,4.\ \]
\[\textbf{б)}\ x^{2} - 4x + 2 = 0\]
\[x^{2} = 4x - 2\]
\[\left\{ \begin{matrix} y = x^{2} \\ y = 4x - 2 \\ \end{matrix} \right.\ \]
\[y = x^{2}\]
\[x\] | \[0\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[y = 4x - 2\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[- 2\] | \[2\] |
\[x^{2} - 4x + 2 = 0\]
\[D = 16 - 8 = 8\]
\[x_{1} = \frac{4 - \sqrt{8}}{2} = \frac{4 - 2\sqrt{2}}{2} = 0,6;\]
\[x_{2} = \frac{4 + \sqrt{8}}{2} = \frac{4 + 2\sqrt{2}}{2} = 3,4.\]
\(\ \)
\[Ответ:x = 3,4;\ \ x = 0,6.\]
\[\boxed{\text{548.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ x^{2} - 8x + 9 = 0\]
\[D_{1} = 4^{2} - 9 = 16 - 9 = 7\]
\[x_{1} = 4 + \sqrt{7} \approx 6,65;\]
\[x_{2} = 4 - \sqrt{7} \approx 1,35.\]
\[Ответ:x = 6,65;\ \ x = 1,35.\]
\[\textbf{б)}\ 2y^{2} - 8y + 5 = 0\]
\[D_{1} = 4^{2} - 2 \cdot 5 = 16 - 10 = 6\]
\[y_{1} = \frac{4 + \sqrt{6}}{2} \approx 3,22;\ \ \]
\[y_{2} = \frac{4 - \sqrt{6}}{2} \approx 0,78.\ \]
\[Ответ:y = 0,78;\ \ y = 3,22.\]