\[\boxed{\text{547\ (547).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 5x^{2} - x - 1 = 0\] \[D = 1 + 20 = 21\] \[x_{1,2} = \frac{1 \pm \sqrt{21}}{10} \approx \frac{1 \pm 4,58}{10}\] \[x_{1} = \frac{1 + 4,58}{10} = \frac{5,58}{10} = 0,56;\] \[x_{2} = \frac{1 - 4,58}{10} = - \frac{3,58}{10} = - 0,36.\] |
\[\textbf{б)}\ 2x^{2} + 7x + 4 = 0\] \[D = 49 - 32 = 17\] \[x_{1,2} = \frac{- 7 \pm \sqrt{17}}{4} \approx \frac{- 7 \pm 4,12}{4}\] \[x_{1} = \frac{- 7 + 4,12}{4} = - 0,72;\] \[x_{2} = \frac{- 7 - 4,12}{4} = - 2,78.\] |
---|---|
\[\textbf{в)}\ 3 \cdot \left( y^{2} - 2 \right) - y = 0\] \[3y^{2} - 6 - y = 0\] \[3y^{2} - y - 6 = 0\] \[D = 1 + 72 = 73\] \[y_{1,2} = \frac{1 \pm \sqrt{73}}{6} \approx \frac{1 \pm 8,54}{6}\] \[y_{1} = \frac{1 + 8,54}{6} = \frac{9,54}{6} = 1,59\] \[y_{2} = \frac{1 - 8,54}{6} = \frac{- 7,54}{6} = - 1,26\] |
\[\textbf{г)}\ y^{2} + 8(y - 1) = 3\] \[y^{2} + 8y - 8 - 3 = 0\] \[y^{2} + 8y - 11 = 0\] \[D = 64 + 44 = 108\] \[y_{1,2} = \frac{- 8 \pm \sqrt{108}}{2} \approx \frac{- 8 \pm 10,39}{2}\] \[y_{1} = \frac{- 8 + 10,39}{2} = \frac{2,39}{2} = 1,20\] \[y_{2} = \frac{- 8 - 10,39}{2} = \frac{- 18,39}{2} = - 9,20\ \] |
\[\boxed{\text{547.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Чтобы решить уравнение графически, нужно построить два графика функции в одной координатной плоскости и найти точки их пересечения.
Приравниваем к y левую и правую части уравнений отдельно и получаем две функции.
Решение.
\[x^{2} = 0,5x + 3\]
\[\left\{ \begin{matrix} y = x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ } \\ y = 0,5x + 3 \\ \end{matrix} \right.\ \]
\[y = x^{2}\]
\[x\] | \[0\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[y = 0,5x + 3\]
\[x\] | \[0\] | \[1\] | \[2\] |
---|---|---|---|
\[y\] | \[3\] | \[3,5\] | \[4\] |
\[x^{2} = 0,5x + 3\]
\[x^{2} - 0,5x - 3 = 0\]
\[D = 0,25 + 12 = 12,25\]
\[x_{1,2} = \frac{0,5 \pm \sqrt{12,25}}{2} = \frac{0,5 \pm 3,5}{2}\]
\[x_{1} = - 1,5;\ \ x_{2} = 2.\]
\[\text{\ \ }\]