\[\boxed{\text{493\ (493).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\mathbf{Вспомним:}\]
\[\sqrt{\mathbf{a}}\mathbf{\cdot}\sqrt{\mathbf{b}}\mathbf{=}\sqrt{\mathbf{\text{ab}}}\mathbf{;\ \ }\]
\[\mathbf{при\ }\mathbf{a \geq 0;\ \ b \geq 0.}\]
Решение.
\[\textbf{а)}\ \sqrt{x}(\sqrt{a} - \sqrt{b}) = \sqrt{\text{ax}} - \sqrt{\text{bx}}\]
\[\textbf{б)}\ \left( \sqrt{x} + \sqrt{y} \right)\sqrt{x} = \sqrt{x^{2}} + \sqrt{\text{xy}} =\]
\[= x + \sqrt{\text{xy}}\]
\[\textbf{в)}\ \sqrt{\text{ab}}\left( \sqrt{a} + \sqrt{b} \right) =\]
\[= \sqrt{a^{2}b} + \sqrt{ab^{2}} = a\sqrt{b} + b\sqrt{a}\ \]
\[\textbf{г)}\ \left( \sqrt{m} - \sqrt{n} \right)\sqrt{\text{mn}} =\]
\[= \sqrt{m^{2}n} - \sqrt{mn^{2}} = m\sqrt{n} - n\sqrt{m}\]
\[\textbf{д)}\ \left( \sqrt{x} + \sqrt{y} \right)\left( 2\sqrt{x} - \sqrt{y} \right) =\]
\[= 2x + \sqrt{\text{xy}} - y\]
\[\textbf{е)}\ \left( \sqrt{a} - \sqrt{b} \right)\left( 3\sqrt{a} + 2\sqrt{b} \right) =\]
\[= 3a - \sqrt{\text{ab}} - 2b\]
\[\textbf{ж)}\ \left( 2\sqrt{a} + \sqrt{b} \right)\left( 3\sqrt{a} - 2\sqrt{b} \right) =\]
\[= 6a - \sqrt{\text{ab}} - 2b\]
\[\textbf{з)}\ \left( 4\sqrt{x} - \sqrt{2x} \right)\left( \sqrt{x} - \sqrt{2x} \right) =\]
\[= 4x - 5x\sqrt{2} + 2x = 6x - 5x\sqrt{2}\ \]
\[\boxed{\text{493.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
При всех допустимых значениях a верно равенство:
\[\left( \sqrt{a} \right)^{2} = a.\]
Свойство степеней:
\[\left( \text{ab} \right)^{m} = a^{m}b^{m}.\]
Формула разности квадратов:
\[(a - b)(a + b) = a^{2} - b^{2}.\]
Решение.
\[= \frac{4\sqrt{30}}{121 - 120} = 4\sqrt{30}\]
\[\textbf{б)}\ \frac{5^{\backslash 3 - 2\sqrt{2}}}{3 + 2\sqrt{2}} + \frac{5^{\backslash 3 + 2\sqrt{2}}}{3 - 2\sqrt{2}} =\]
\[= \frac{5 \cdot \left( 3 - 2\sqrt{2} \right) + 5 \cdot \left( 3 + 2\sqrt{2} \right)}{\left( 3 + 2\sqrt{2} \right)\left( 3 - 2\sqrt{2} \right)} =\]
\[= \frac{5 \cdot \left( 3 - 2\sqrt{2} + 3 + 2\sqrt{2} \right)}{\left( 3 + 2\sqrt{2} \right)\left( 3 - 2\sqrt{2} \right)} =\]
\[= \frac{5 \cdot 6}{9 - 4 \cdot 2} = \frac{30}{9 - 8} = 30\]
\[= \frac{5 - 2\sqrt{15} + 3 + 5 + 2\sqrt{15} + 3}{5 - 3} =\]
\[= \frac{16}{2} = 8\]