\[\boxed{\text{490\ (490).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 0,5\sqrt{60a^{2}} = 0,5 \cdot \sqrt{4 \cdot 15a^{2}} =\]
\[= 0,5 \cdot 2\sqrt{15} \cdot |a| = |a|\sqrt{15}\]
\[\textbf{б)}\ 2,1\sqrt{300x^{4}} =\]
\[= 2,1\sqrt{{3 \cdot 100 \cdot x}^{4}} =\]
\[= 2,1 \cdot 10\sqrt{3} \cdot \left| x^{2} \right| = 21\sqrt{3}x^{2}\]
\[\textbf{в)}\ 0,1\sqrt{150x^{3}} =\]
\[= 0,1\sqrt{25 \cdot 6 \cdot x^{2} \cdot x} =\]
\[= 0,1 \cdot 5|x| \cdot \sqrt{6x} = 0,5|x|\sqrt{6x}\]
\[\textbf{г)}\ 0,2\sqrt{225a^{5}} = 0,2 \cdot 15\left| a^{2} \right|\sqrt{a} =\]
\[= 3a^{2}\sqrt{a}\]
\[\textbf{д)}\ a\sqrt{18a^{2}b} = a\sqrt{9 \cdot 2 \cdot a^{2}b} =\]
\[= 3a|a|\sqrt{2b}\]
\[\textbf{е)} - m\sqrt{48am^{4}} =\]
\[= - m\sqrt{16 \cdot 3 \cdot am^{4}} =\]
\[= - m \cdot 4\left| m^{2} \right|\sqrt{3a} = - 4m^{3}\sqrt{3a}\]
\[\boxed{\text{490.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
При всех допустимых значениях a верно равенство:
\[\left( \sqrt{a} \right)^{2} = a.\]
Формулы квадрата разности и квадрата суммы:
\[\mathbf{a}^{\mathbf{2}}\mathbf{- 2}\mathbf{ab +}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a - b} \right)^{\mathbf{2}}\mathbf{;}\]
\[\mathbf{a}^{\mathbf{2}}\mathbf{+ 2}\mathbf{ab +}\mathbf{b}^{\mathbf{2}}\mathbf{=}\left( \mathbf{a + b} \right)^{\mathbf{2}}\mathbf{.}\]
Решение.
\[\textbf{а)}\ при\ x = 1 + \sqrt{5}:\]
\[x^{2} - 6 = \left( 1 + \sqrt{5} \right)^{2} - 6 =\]
\[= 1 + 2\sqrt{5} + 5 - 6 = 2\sqrt{5}.\]
\[\textbf{б)}\ при\ x = 3 - \sqrt{3}:\]
\[x^{2} - 6x = x(x - 6) =\]
\[= \left( 3 - \sqrt{3} \right)\left( 3 - \sqrt{3} - 6 \right) =\]
\[= \left( 3 - \sqrt{3} \right)\left( - \sqrt{3} - 3 \right) =\]
\[= - 3\sqrt{3} - 9 + \sqrt{3}\sqrt{3} + 3\sqrt{3} =\]
\[= - 9 + 3 = - 6.\]
\[\textbf{в)}\ при\ x = 2 + \sqrt{3}:\ \]
\[x^{2} - 4x + 3 =\]
\[= \left( 2 + \sqrt{3} \right)^{2} - 4\left( 2 + \sqrt{3} \right) + 3 =\]
\[= 4 + 4\sqrt{3} + 3 - 8 - 4\sqrt{3} + 3 =\]
\[= 2\]
\[\textbf{г)}\ при\ x = \frac{3 + \sqrt{2}}{2}:\]
\[x^{2} - 3x + 5 =\]
\[= \left( \frac{3 + \sqrt{2}}{2} \right)^{2} - 3 \cdot \left( \frac{3 + \sqrt{2}}{2} \right) + 5 =\]
\[= \frac{\left( 3 + \sqrt{2} \right)^{2}}{4} - \frac{3\left( 3 + \sqrt{2} \right)}{4} + 5 =\]
\[= \frac{9 + 6\sqrt{2} + 2 - 6\left( 3 + \sqrt{2} \right) + 20}{4} =\]
\[= \frac{9 + 6\sqrt{2} + 2 - 18 - 6\sqrt{2} + 20}{4} =\]
\[= \frac{13}{4} = 3\frac{1}{4} = 3,25.\]