\[\boxed{\text{49\ (49).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x}{a - b} = \frac{x \cdot (a - b)}{(a - b) \cdot (a - b)} =\]
\[= \frac{xa - xb}{(a - {b)}^{2}}\]
\[\textbf{б)}\ \frac{y}{x - a} = \frac{y \cdot (x + a)}{(x - a) \cdot (x + a)} =\]
\[= \frac{yx + ya}{x^{2} - a^{2}}\]
\[\textbf{в)}\ \frac{a}{a - 10} = \frac{a \cdot ( - 1)}{(a - 10) \cdot ( - 1)} =\]
\[= \frac{- a}{10 - a} = - \frac{a}{10 - a}\]
\[\textbf{г)}\ \frac{p}{p - 2} = \frac{p \cdot \left( - (p + 2) \right)}{(p - 2) \cdot \left( - (p + 2) \right)} =\]
\[= \frac{- p \cdot (p + 2)}{4 - p^{2}} = - \frac{p^{2} + 2p}{4 - p^{2}}\]
\[\boxed{\text{49.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\frac{5b}{8a^{3}} = \frac{5b \cdot 3b^{2}}{8a^{3} \cdot 3b^{2}} = \frac{15b^{3}}{24a^{3}b^{2}}\]
\[\frac{7a}{3b^{2}} = \frac{7a \cdot 8a^{3}}{3b^{2} \cdot 8a^{3}} = \frac{56a^{4}}{24a^{3}b^{2}}\]
\[\frac{1}{2ab} = \frac{1 \cdot 12a^{2}b}{2ab \cdot 12a^{2}b} = \frac{12a^{2}b}{24b^{2}a^{3}}\]
\[\frac{2}{a^{2}b^{2}} = \frac{2 \cdot 24a}{a^{2}b^{2} \cdot 24a} = \frac{48a}{24a^{3}b^{2}}\]