\[\boxed{\text{425\ (425).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\boxed{\text{425.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{m}{\sqrt{x}} = \frac{m \cdot \sqrt{x}}{\sqrt{x} \cdot \sqrt{x}} = \frac{m\sqrt{x}}{x}\]
\[\textbf{б)}\ \frac{1}{\sqrt{2}} = \frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}\]
\[\textbf{в)}\ \frac{3}{5\sqrt{c}} = \frac{3 \cdot \sqrt{c}}{5\sqrt{c} \cdot \sqrt{c}} = \frac{3\sqrt{c}}{5c}\]
\[\textbf{г)}\ \frac{a}{2\sqrt{3}} = \frac{a\sqrt{3}}{2 \cdot 3} = \frac{a\sqrt{3}}{6}\]
\[\textbf{д)}\ \frac{3}{2\sqrt{3}} = \frac{3 \cdot \sqrt{3}}{2\sqrt{3} \cdot \sqrt{3}} = \frac{3\sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{2}\]
\[\textbf{е)}\ \frac{5}{4\sqrt{15}} = \frac{5 \cdot \sqrt{15}}{4\sqrt{15} \cdot \sqrt{15}} =\]
\[= \frac{5 \cdot \sqrt{15}}{4 \cdot 15} = \frac{\sqrt{15}}{12}\]