\[\boxed{\text{372\ (372).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \sqrt{9 \cdot 64 \cdot 0,25} = 3 \cdot 8 \cdot 0,5 =\]
\[= 12\]
\[\textbf{б)}\ \sqrt{1,21 \cdot 0,09 \cdot 0,0001} =\]
\[= 1,1 \cdot 0,3 \cdot 0,01 = 0,0033\]
\[\textbf{в)}\ \sqrt{\frac{25}{81} \cdot \frac{16}{49} \cdot \frac{196}{9}} = \frac{5}{9} \cdot \frac{4}{7} \cdot \frac{14}{3} =\]
\[= \frac{280}{189} = \frac{40}{27} = 1\frac{13}{27}\]
\[\textbf{г)}\ \sqrt{5\frac{1}{16} \cdot 2\frac{34}{81}} = \sqrt{\frac{81}{16} \cdot \frac{196}{81}} =\]
\[= \frac{14}{4} = \frac{7}{2} = 3,5\]
\[\boxed{\text{372.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \sqrt{\frac{2}{7}} = \frac{\sqrt{2}}{\sqrt{7}}\]
\[\textbf{б)}\ \sqrt{\frac{3}{10}} = \frac{\sqrt{3}}{\sqrt{10}}\]
\[\textbf{в)}\ \sqrt{\frac{5}{a}} = \frac{\sqrt{5}}{\sqrt{a}}\]
\[\textbf{г)}\ \sqrt{\frac{b}{3}} = \frac{\sqrt{b}}{\sqrt{3}}\]