\[\boxed{\text{37\ (37).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{x}{y} = \frac{- x}{- y} = - \frac{- x}{y}\]
\[\textbf{б)}\ \frac{x}{y} - противоположные\ \]
\[дроби:\]
\[\frac{- x}{y};\ \ \frac{x}{- y}.\]
\[\boxed{\text{37.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{2x + \text{bx} - 2y - \text{by}}{7x - 7y} =\]
\[= \frac{2 \cdot (x - y) + b \cdot (x - y)}{7 \cdot (x - y)} =\]
\[= \frac{2 + b}{7}\]
\[\textbf{б)}\ \frac{8a + 4b}{2ab + b^{2} - 2ad - bd} =\]
\[= \frac{4 \cdot (2a + b)}{b \cdot (2a + b) - d \cdot (2a + b)} =\]
\[= \frac{4}{b - d}\]
\[\textbf{в)}\frac{\ xy - x + y - y^{2}}{x^{2} - y^{2}} =\]
\[= \frac{x \cdot (y - 1) + y \cdot (1 - y)}{(x - y) \cdot (x + y)} =\]
\[\textbf{г)}\ \frac{a^{2} + 2ac + c^{2}}{a^{2} + ac - ax - cx} =\]
\[= \frac{(a + c)^{2}}{a \cdot (a + c) - x \cdot (a + c)} =\]
\[= \frac{a + c}{a - x}\]