\[\boxed{\text{366\ (366).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 0,5 \cdot \sqrt{121} + 3 \cdot \sqrt{0,81} =\]
\[= 0,5 \cdot 11 + 3 \cdot 0,9 = 5,5 + 2,7 =\]
\[= 8,2\]
\[\textbf{б)}\ \sqrt{144} \cdot \sqrt{900} \cdot \sqrt{0,01} =\]
\[= 12 \cdot 30 \cdot 0,1 = 36\]
\[\textbf{в)}\ \sqrt{400} - \left( 4 \cdot \sqrt{0,5} \right)^{2} =\]
\[= 20 - 16 \cdot 0,5 = 20 - 8 = 12\]
\[\textbf{г)}\ \left( - 3 \cdot \sqrt{\frac{1}{3}} \right)^{2} - 10 \cdot \sqrt{0,64} =\]
\[= 9 \cdot \frac{1}{3} - 10 \cdot 0,8 = 3 - 8 = - 5\]
\[\textbf{д)}\ \left( - \sqrt{\frac{1}{11}} \right)^{2} - 5 \cdot \sqrt{0,16} =\]
\[= \frac{1}{11} - 5 \cdot 0,4 = \frac{1}{11} - 2 = - 1\frac{10}{11}\]
\[\textbf{е)}\ \left( - 6\sqrt{\frac{1}{6}} \right)^{2} - 4 \cdot \sqrt{0,36} =\]
\[= 36 \cdot \frac{1}{6} - 4 \cdot 0,6 = 6 - 2,4 = 3,6\ \]
\[\boxed{\text{366.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Если \(a \geq 0\ и\ b \geq 0,\ \)то:
\[\sqrt{\text{ab}} = \sqrt{a} \cdot \sqrt{b}.\]
Если \(a \geq 0\ и\ b > 0\), то:
\[\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}.\]
Решение.
\[\textbf{а)}\ \sqrt{0,04 \cdot 81 \cdot 25} = 0,2 \cdot 9 \cdot 5 =\]
\[= 9\]
\[\textbf{б)}\ \sqrt{0,09 \cdot 16 \cdot 0,04} =\]
\[= 0,3 \cdot 4 \cdot 0,2 = 0,24\]
\[\textbf{в)}\ \sqrt{1\frac{7}{9} \cdot \frac{4}{25}} = \sqrt{\frac{16}{9} \cdot \frac{4}{25}} =\]
\[= \frac{4}{3} \cdot \frac{2}{5} = \frac{8}{15}\]
\[\textbf{г)}\ \sqrt{\frac{121}{144} \cdot 2\frac{1}{4}} = \sqrt{\frac{121}{144} \cdot \frac{9}{4}} =\]
\[= \frac{11}{12} \cdot \frac{3}{2} = \frac{33}{24} = 1\frac{9}{24} = 1\frac{3}{8}\ \]