\[\boxed{\text{355\ (355).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \sqrt{x}\]
\[x\] | \[0\] | \[1\] | \[4\] | \[9\] | \[16\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] | \[3\] | \[4\] |
\[\textbf{а)}\ \sqrt{2,5} \approx 1,6;\ \ \ \sqrt{5,5} \approx 2,3;\ \ \ \]
\[\sqrt{8,4} \approx 2,9\]
\[\textbf{б)}\ (1,2)^{2} = 1,44;\ \ \ (1,7)^{2} = 2,89;\ \ \ \ \]
\[(2,5)^{2} = 6,25\]
\[\boxed{\text{355.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Чтобы решить графически уравнение, нужно построить графики функций в одной системе координат и найти точки их пересечения.
Решение.
\[\textbf{а)}\ \sqrt{x} = 6 - x\]
\[\left\{ \begin{matrix} y = \sqrt{x}\text{\ \ \ \ } \\ y = 6 - x \\ \end{matrix} \right.\ \ \]
\[x\] | \[0\] | \[1\] | \[4\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] |
\[x\] | \[0\] | \[1\] | \[4\] |
---|---|---|---|
\[y\] | \[6\] | \[5\] | \[2\] |
\[Ответ:x = 4.\]
\[\textbf{б)}\ \sqrt{x} = \frac{4}{x}\]
\[\left\{ \begin{matrix} y = \sqrt{x} \\ y = \frac{4}{x}\text{\ \ \ } \\ \end{matrix} \right.\ \]
\[x\] | \[0\] | \[1\] | \[4\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] |
\[x\] | \[0\] | \[1\] | \[- 1\] | \[2\] | \[- 2\] | \[4\] | \[- 4\] |
---|---|---|---|---|---|---|---|
\[y\] | \[-\] | \[4\] | \[- 4\] | \[2\] | \[- 2\] | \[1\] | \[- 1\] |
\[Ответ:x \approx 2,5,\]
\[\textbf{в)} - x - 5 = \sqrt{x}\]
\[\left\{ \begin{matrix} y = - x - 5 \\ y = \sqrt{x}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[x\] | \[0\] | \[- 5\] | \[- 2\] |
---|---|---|---|
\[y\] | \[- 5\] | \[0\] | \[- 3\] |
\[x\] | \[0\] | \[1\] | \[4\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] |
\[Ответ:общих\ точек\ нет.\]