\[\boxed{\text{353\ (353).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Площадь\ одной\ грани\ куба\ \]
\[находится\ по\ формуле\ \]
\[площади\ квадрата:\]
\[S = a^{2}.\]
\[Куб\ имеет\ 6\ таких\ граней:\]
\[S_{пов} = 6 \cdot a^{2}.\]
\[\textbf{а)}\ S = 6a^{2}\]
\[\textbf{б)}\ S = 6a^{2}\ \]
\[a^{2} = \frac{S}{6}\text{\ \ }\]
\[a = - \sqrt{\frac{S}{6}}\ \]
\[(не\ подходит\ по\ условию);\]
\[a = \sqrt{\frac{S}{6}}.\]
\[\boxed{\text{353.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Чтобы определить, пересекает ли график функции y=√x данная прямая, приравняем функции и решим полученное уравнение.
Сначала возведем в квадрат обе части уравнения.
Решение.
\[\textbf{а)}\ y = \sqrt{x};\ \ \ y = x\]
\[\left( \sqrt{x} \right)^{2} = (x)^{2}\]
\[x = x^{2}\]
\[x^{2} - x = 0\]
\[x(x - 1) = 0\]
\[x = 0\ \ \ \ \ \ x = 1\]
\[да,\ имеют\ \]
\[(0;0),\ (0;1).\]
\[\textbf{б)}\ y = \sqrt{x};\ \ \ y = 1000\]
\[\left( \sqrt{x} \right)^{2} = 1000^{2}\]
\[x = 1\ 000\ 000\]
\[да,\ имеют\]
\[(1\ 000\ 000;1000).\]
\[\textbf{в)}\ y = \sqrt{x};\ \ y = x + 10\]
\[\left( \sqrt{x} \right)^{2} = (x + 10)^{2}\]
\[x = x^{2} + 20x + 100\]
\[x^{2} + 19x + 100 = 0\]
\[D = 361 - 400 < 0\]
\[корней\ нет,\ значит\ и\ общих\ \]
\[точек\ тоже\ нет.\]
\[\textbf{г)}\ y = \sqrt{x};\ \ y = - x + 1,5\]
\[\left( \sqrt{x} \right)^{2} = ( - x + 1,5)^{2}\]
\[x = 2,25 - 3x + x^{2}\]
\[x^{2} - 4x + 2,25 = 0\]
\[D = 16 - 9 = 7\]
\[x_{1,2} = \frac{4 \pm \sqrt{7}}{2} \approx \frac{4 \pm 2,65}{2}\]
\[Общие\ точки\ есть,\ \]
\[координаты\ примерные\]
\[\ (0,7;0,8).\]