\[\boxed{\text{327\ (327).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Выражение\ \sqrt{a}\ имеет\ смысл\ \]
\[при\ любом\ a \geq 0.\]
Решение.
\[\textbf{а)}\ \sqrt{2x}\text{\ \ }при\ \ \ \ \ \ \]
\[2x \geq 0;\ \ \]
\[x \geq 0.\]
\[\textbf{б)}\ \sqrt{- x}\ \ при\ \ \]
\[- x \geq 0;\ \ \]
\[x \leq 0.\ \]
\[\boxed{\text{327.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x - |x - 1|}{x + 2} = ?\]
\[x = 4:\]
\[\frac{4 - |4 - 1|}{4 + 2} = \frac{4 - 3}{6} = \frac{1}{6}.\]
\[x = 38:\]
\[\frac{38 - |38 - 1|}{38 + 2} = \frac{38 - 37}{40} = \frac{1}{40}.\]
\[x = - 42:\]
\[\frac{- 42 - | - 42 - 1|}{- 42 + 2} = \frac{- 42 - 43}{- 40} =\]
\[= - \frac{85}{- 40} = \frac{85}{40} = \frac{17}{8} = 2\frac{1}{8}.\]
\[\textbf{б)}\ \frac{2|3 - x| - 1}{4} = ?\]
\[x = 2:\]
\[\frac{2|3 - 2| - 1}{4} = \frac{2 - 1}{4} = \frac{1}{4}.\]
\[x = 11:\]
\[\frac{2|3 - 11| - 1}{4} = \frac{2 \cdot ( - 8) - 1}{4} =\]
\[= - \frac{17}{4} = - 4\frac{1}{4}.\]
\[x = - 6:\]
\[\frac{2|3 + 6| - 1}{4} = \frac{18 - 1}{4} = \frac{17}{4} =\]
\[= 4\frac{1}{4}.\]