\[\boxed{\text{320\ (320).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ x^{2} = 36\]
\[x = \pm \sqrt{36}\]
\[x = \pm 6.\]
\[\textbf{б)}\ x^{2} = 0,49\]
\[x = \pm \sqrt{0,49}\]
\[x = \pm 0,7.\]
\[\textbf{в)}\ x^{2} = 121\]
\[x = \pm \sqrt{121}\]
\[x = \pm 11.\]
\[\textbf{г)}\ x^{2} = 11\]
\[x = \pm \sqrt{11}.\]
\[\textbf{д)}\ x^{2} = 8\]
\[x = \pm \sqrt{8}\]
\[x = \pm 2\sqrt{2}.\]
\[\textbf{е)}\ x^{2} = 2,5\]
\[x = \pm \sqrt{2,5}\]
\[x = \pm 5\sqrt{0,1}.\]
\[\boxed{\text{320.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Выражение \(\sqrt{a}\) имеет смысл при любом a≥0.
Решение.
\[\textbf{а)}\ \sqrt{2x}\text{\ \ }при\ \ \ \ \ \ 2x \geq 0;\ \ x \geq 0\]
\[\textbf{б)}\ \sqrt{- x}\ \ при\ \ - x \geq 0;\ \ \ x \leq 0\ \]