\[\boxed{\text{245\ (245).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{1^{\backslash p + 2q}}{p - 2q} - \frac{6q}{4q^{2} - p^{2}} - \frac{2^{\backslash p - 2q}}{p + 2q} =\]
\[= - \frac{1}{2p} \cdot \left( \frac{p^{2} + 4q^{2}}{p^{2} - 4q^{2}} + 1^{\backslash p^{2} - 4q^{2}\ } \right)\]
\[Преобразуем\ обе\ части\ \]
\[равенства:\]
\[\frac{p + 2q - 6q - 2p + 4q}{p^{2} - 4q^{2}} =\]
\[= - \frac{1}{2p} \cdot \frac{p^{2} + 4q^{2} + p^{2} - 4q^{2}}{p^{2} - 4q^{2}}\]
\[Что\ и\ требовалось\ доказать\]
\[\boxed{\text{245.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Приведем к общему знаменателю дроби в первых и вторых скобках.
Умножим.
Четным называется число, кратное 2.
Решение.
\[Что\ и\ требовалось\ доказать.\]