\[\boxed{\text{238\ (238).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{5x}{(x - 2)(x + 3)} =\]
\[= \frac{a^{\backslash x + 3}}{x - 2} + \frac{b^{\backslash x - 2}}{x + 3}\]
\[\frac{5x}{(x - 2)(x + 3)} =\]
\[= \frac{ax + 3a + bx - 2b}{(x - 2)(x + 3)}\]
\[5x = ax + bx + 3a - 2b\]
\[5x + 0 = x(a + b) + (3a - 2b)\]
\[\left\{ \begin{matrix} a + b = 5\ \ \ \ \ \\ 3a - 2b = 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} a = 5 - b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3(5 - b) - 2b = 0 \\ \end{matrix} \right.\ \]
\[15 - 3b - 2b = 0\]
\[15 - 5b = 0\]
\[b = 3.\]
\[a = 5 - b = 5 - 3 = 2.\]
\[Ответ:a = 2,\ b = 3.\]
\[\textbf{б)}\frac{5x + 31}{(x - 5)(x + 2)} =\]
\[= \frac{a^{\backslash x + 2}}{x - 5} - \frac{b^{\backslash x - 5}}{x + 2}\]
\[\frac{5x + 31}{(x - 5)(x + 2)} =\]
\[= \frac{ax + 2a - bx + 5b}{(x - 5)(x + 2)}\]
\[5x + 31 = x(a - b) + (2a + 5b)\]
\[\left\{ \begin{matrix} a - b = 5\ \ \ \ \ \ \ \ \\ 2a + 5b = 31 \\ \end{matrix} \right.\ \ \]
\[a = 5 + b\]
\[2(5 + b) + 5b = 31\]
\[10 + 2b + 5b = 31\]
\[7b = 21\]
\[b = 3.\]
\[a = 5 + b = 5 + 3 = 8.\]
\[Ответ:a = 8,\ b = 3.\]
\[\boxed{\text{238.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Выделить целую часть рациональной дроби – значит, представить эту дробь в виде алгебраической суммы целого многочлена и рациональной дроби.
Выделим целую часть из дроби: преобразуем числитель, представив его в виде суммы, где одно из слагаемых делится на знаменатель без остатка.
Решение.
\[\textbf{а)}\ \frac{x^{2} - 3x + 6}{x - 3} =\]
\[= \frac{x^{2} - 3x}{x - 3} + \frac{6}{x - 3} =\]
\[= \frac{x(x - 3)}{x - 3} + \frac{6}{x - 3} = x + \frac{6}{x - 3}\]
\[\textbf{б)}\ \frac{y^{2} + 5y - 8}{y + 5} =\]
\[= \frac{y^{2} + 5y}{y + 5} - \frac{8}{y + 5} =\]
\[= \frac{y(y + 5)}{y + 5} - \frac{8}{y + 5} = y - \frac{8}{y + 5}\]
\[\textbf{в)}\ \frac{a^{2} + 7a + 2}{a + 6} =\]
\[= \frac{a^{2} + 6a + a + 2}{a + 6} =\]
\[= \frac{a^{2} + 6a}{a + 6} + \frac{a + 2}{a + 6} =\]
\[= \frac{a(a + 6)}{a + 6} + \frac{a + 2}{a + 6} =\]
\[= a + \frac{a + 2}{a + 6}\]
\[\textbf{г)}\ \frac{3b^{2} - 10b - 1}{b - 3} =\]
\[= \frac{3b^{2} - 9b - b - 1}{b - 3} =\]
\[= \frac{3b^{2} - 9b}{b - 3} - \frac{b + 1}{b - 3} =\]
\[= \frac{3b(b - 3)}{b - 3} - \frac{b + 1}{b - 3} =\]
\[= 3b - \frac{b + 1}{b - 3}\]