\[\boxed{\text{236\ (236).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{5x}{x + 2} = \frac{5x + 10 - 10}{x + 2} =\]
\[= \frac{5(x + 2) - 10}{x + 2} =\]
\[= \frac{5(x + 2)}{x + 2} - \frac{10}{x + 2} = 5 - \frac{10}{x + 2}\]
\[\textbf{б)}\ \frac{- 2x}{x - 1} = \frac{- 2x + 2 - 2}{x - 1} =\]
\[= \frac{- 2(x - 1) - 2}{x - 1} =\]
\[= \frac{- 2(x - 1)}{x - 1} - \frac{2}{x - 1} =\]
\[= - 2 - \frac{2}{x - 1}\]
\[\textbf{в)}\ \frac{2x}{5 - x} = \frac{2x - 10 + 10}{5 - x} =\]
\[= \frac{2(x - 5)}{5 - x} + \frac{10}{5 - x} =\]
\[= \frac{- 2(5 - x)}{5 - x} + \frac{10}{5 - x} =\]
\[= - 2 + \frac{10}{5 - x}\]
\[\textbf{г)}\ \frac{x - 3}{2 - x} = \frac{x - 2 - 1}{2 - x} =\]
\[= \frac{- (2 - x) - 1}{2 - x} =\]
\[= - \frac{2 - x}{2 - x} - \frac{1}{2 - x} =\]
\[= - 1 - \frac{1}{2 - x}\]
\[\boxed{\text{236.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Преобразуем левую часть равенства:
приведем дроби к общему знаменателю;
выполним группировку слагаемых в числителе, вынесем за скобки общий множитель.
Решение.
\[Преобразуем\ левую\ часть\ \]
\[равенства:\]
\[\frac{a^{2}x + a^{2}y + b^{2}y + b^{2}x}{\left( a^{2} - b^{2} \right)(x + y)} =\]
\[= \frac{a^{2} + b^{2}}{a^{2} - b^{2}}\]
\[\frac{a^{2}(x + y) + b^{2}(x + y)}{\left( a^{2} - b^{2} \right)(x + y)} =\]
\[= \frac{a^{2} + b^{2}}{a^{2} - b^{2}}\]
\[\frac{a^{2} + b^{2}}{a^{2} - b^{2}} = \frac{a^{2} + b^{2}}{a^{2} - b^{2}}\]
\[Что\ и\ требовалось\ доказать.\]